Ionic Liquid as Useful Media for Dissolution, Derivatization, and Nanomaterial Processing of Chitin

Abstract

This paper reviews studies on dissolution, derivatization, and nanomaterial processing of chitin using an ionic liquid as useful media. Because chitin is the second most abundant polysaccharide on the earth after cellulose, there is major interest in conversion of native chitin resources into various useful materials after proper dissolution in suitable solvents. For the derivatization and nanomaterial processing of chitin, the author has been focusing on ionic liquids because which have been found to be used as good solvents for cellulose in a past decade. The author found that an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), dissolved chitin in concentrations up to 4.8 wt% and mixtures of the higher amounts of chitin with AMIMBr gave ion gels. Acetylation, the simplest derivatization, of chitin using acetic anhydride was achieved in the AMIMBr solvent under mild conditions. Furthermore, the chitin nanofibers were fabricated by regeneration technique from the chitin ion gel with AMIMBr using methanol. Moreover, filtration of the chitin nanofiber dispersion with methanol was carried out to give a chitin nanofiber film. The chitin nanofiber-poly(vinyl alcohol) composite film was also prepared from the ion gel by co-regeneration method.

Share and Cite:

J. Kadokawa, "Ionic Liquid as Useful Media for Dissolution, Derivatization, and Nanomaterial Processing of Chitin," Green and Sustainable Chemistry, Vol. 3 No. 2A, 2013, pp. 19-25. doi: 10.4236/gsc.2013.32A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews, Vol. 99, No. 8, 1999, pp. 2071-2084. doi:10.1021/cr980032t
[2] P. Wasserscheid and W. Keim, “Ionic Liquids: New ‘Solutions’ for Transition Metal Catalysis,” Angewandte Chemie International Edition, Vol. 39, No. 21, 2000, pp. 3772-3789. doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
[3] N. V. Plechkova and K. R. Seddon, “Applications of Ionic Liquids in the Chemical Industry,” Chemical Society Reviews, Vol. 37, No. 1, 2008, pp. 123-150. doi:10.1039/b006677j
[4] O. A. E. Seoud, A. Koschella, L. C. Fidale, S. Dorn and T. Heinze, “Applications of Ionic Liquids in Carbohydrate Chemistry: A Windows of Opportunities,” Biomacromolecules, Vol. 8, No. 9, 2007, pp. 2629-2648. doi:10.1021/bm070062i
[5] C. Schuerch, “Polysaccharides,” In: H. F. Mark, N. Bilkales and C. G. Overberger, Eds., Encyclopedia of Polymer Science and Engineering, 2nd Edition, John Wiley & Sons, New York, 1986, Vol. 13, pp. 87-162.
[6] D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, “Cellulose: Fascinating Biopolymer and Sustainable Raw mMaterial,” Angewandte Chemie International Edition, Vol. 44, No. 22, 2005, pp. 3358-3393. doi:10.1002/anie.200460587
[7] M. Rinaudo, “Chitin and Chitosan: Properties and Applications,” Progress in Polymer Science, Vol. 31, No. 7, 2006, pp. 603-632. doi:10.1016/j.progpolymsci.2006.06.001
[8] K. Kurita, “Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans,” Marine Biotechnology, Vol. 8, No. 3, 2006, pp. 203-226. doi:10.1007/s10126-005-0097-5
[9] C. K. S. Pillai, W. Paul and C. P. Sharma “Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation,” Progress in Polymer Science, Vol. 34, No. 7, 2009, pp. 641-678. doi:10.1016/j.progpolymsci.2009.04.001
[10] R. A. A. Muzzarelli, “Chitin Nanostructures in Living Organisms,” In: S. N. Gupta, Ed., Chitin Formation and Diagenesis, Springer, New York, 2011.
[11] D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S. B. Yi, G. Servos and H. G. Hartwig, “Micro-structure and Crystallographic Texture of the Chitin-Protein Network in the Biological Composite Material of the Exoskeleton of the Lobster Homarus Americanus,” Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol. 421, No. 1-2, 2006, pp. 143-153.
[12] P. Y. Chen, A. Y. M. Lin, J. McKittrick and M. A. Meyers, “Structure and Mechanical Properties of Crab Exoskeletons,” Acta Biomaterialia, Vol. 4, No. 3, 2008, pp. 587-596. doi:10.1016/j.actbio.2007.12.010
[13] R. Minke and J. Blackwell, “The Structure of α-Chitin,” Journal of Molecular Biology, Vol. 120, No. 2, 1978, pp. 167-181. doi:10.1016/0022-2836(78)90063-3
[14] K. H. Gardner and J. Blackwell, “Refinement of the Structure of β-Chitin,” Biopolymers, Vol. 14, No. 8, 1975, pp. 1581-1595. doi:10.1002/bip.1975.360140804
[15] R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, “Dissolution of Cellulose with Ionic Liquids,” Journal of the American Chemical Society, Vol. 124, No. 18, 2002, pp. 4974-4975. doi:10.1021/ja025790m
[16] T. Liebert and T. Heinze, “Interaction of Ionic Liquids with Polysaccharides 5. Solvents and Reaction Media for the Modification of Cellulose,” BioResources, Vol. 3, No. 2, 2008, pp. 576-601.
[17] L. Feng and Z. I. Chen, “Research Progress on Dissolution and Functional Modification of Cellulose in Ionic Liquids,” Journal of Molecular Liquids, Vol. 142, No. 1-3, 2008, pp. 1-5. doi:10.1016/j.molliq.2008.06.007
[18] A. Pinkert, K. N. Marsh, S. Pang and M. P. Staiger, “Ionic Liquids and their Interaction with Cellulose,” Chemical Reviews, Vol. 109, No. 12, 2009, pp. 6712-6728. doi:10.1021/cr9001947
[19] M. E. Zakrzewska, E. B. Lukasik and R. B. Lukasik, “Solubility of Carbohydrates in Ionic Liquids,” Energy & Fuels, Vol. 24, No. 2, 2010, pp. 737-745. doi:10.1021/ef901215m
[20] S. Yamazaki, A. Takegawa, Y. Kaneko, J. Kadokawa, M. Yamagata and M. Ishikawa, “An Acidic Cellulose-Chitin Hybrid Gel as Novel Electrolyte for an Electric Double Layer Capacitor,” Electrochemistry Communications, Vol. 11, No. 1, 2009, pp. 68-70. doi:10.1016/j.elecom.2008.10.039
[21] K. Prasad, M. Murakami, Y. Kaneko, A. Takada, Y. Nakamura and J. Kadokawa, “Weak Gel of Chitin with Ionic Liquid, 1-Allyl-3-Methylimidazolium Bromide,” International Journal of Biological Macromolecules, Vol. 45, No. 3, 2009, pp. 221-225. doi:10.1016/j.ijbiomac.2009.05.004
[22] Y. Wu, T. Sasaki, S. Irie and K. Sakurai, “A Novel Biomass-Ionic Liquid Platform for the Utilization of Native Chitin,” Polymer, Vol. 49, No. 9, 2008, pp. 2321-2327. doi:10.1016/j.polymer.2008.03.027
[23] Y. Qin, X. Lu, N. Sun and R. D. Rogers, “Dissolution or Extraction of Crustacean Shells Using Ionic Liquids to Obtain High Molecular Weight Purified Chitin and Direct Production of Chitin Films and Fibers,” Green Chemistry, Vol. 12, No. 6, 2010, pp. 968-971. doi:10.1039/c003583a
[24] W. T. Wang, J. Zhu, X. L. Wang, Y. Huang and Y. Z. Wang, “Dissolution Behavior of Chitin in Ionic Liquids,” Journal of Macromolecular Science, Part B Physics, Vol. 49, No. 3, 2010, pp. 528-541. doi:10.1080/00222341003595634
[25] R. A. A. Muzzarelli, “Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying,” Marine Drugs, Vol. 9, No. 9, 2011, pp. 1510-1533. doi:10.3390/md9091510
[26] M. M. Jaworska, T. Kozlecki and A. Gorak, “Review of the Application of Ionic Liquids as Solvents for Chitin,” Journal of Polymer Engineering, Vol. 32, No. 2, 2012, pp. 67-69. doi:10.1515/polyeng-2011-0145
[27] A. M. Bochek, A. A. Muravev, N. P. Novoselov, M. Zaborski, N. M. Zabivalova, V. A. Petrova, E. N. Vlasova, B. Z. Volchek and V. K. Lavrentev, “Specific Features of Cellulose and Chitin Dissolution in Ionic Liquids of Varied Structure and the Structural Organization of Regenerated Polysaccharides,” Russian Journal of Applied Chemistry, Vol. 85, No. 11, 2012, pp. 1718-1725. doi:10.1134/S1070427212110158
[28] K. Kurita, “Controlled Functionalization of the Polysaccharide Chitin,” Progress in Polymer Science, Vol. 26, No. 9, 2001, pp. 1921-1971. doi:10.1016/S0079-6700(01)00007-7
[29] M. Morimoto, H. Saimoto and Y. Shigemasa, “Control of Functions of α-Chitin and Chitosan by Chemical Modification,” Trends in Glycoscience and Glycotechnology, Vol. 14, No. 78, 2002, pp. 205-222. doi:10.4052/tigg.14.205
[30] S. Mine, H. Izawa, Y. Kaneko and J. Kadokawa, “Acetylation of Chitin in Ionic Liquids,” Carbohydrate Reserach, Vol. 344, No. 16, 2009, pp. 2263-2265. doi:10.1016/j.carres.2009.08.004
[31] J. B. Zeng, Y. S. He, S. L. Li and Y. Z. Wang, “Chitin Whiskers: A Overview,” Biomacromolecules, Vol. 13, No. 1, 2012, pp. 1-11. doi:10.1021/bm201564a
[32] S. Ifuku and H. Saimoto, “Chitin Nanofibers: Preparations, Modifications, and Applications,” Nanoscale, Vol. 4, No. 11, 2012, pp. 3308-3318. doi:10.1039/c2nr30383c
[33] S. Ifuku, “Preparation of Chitin Nanofibers from Crab Shell and Their Applications,” Kobunshi Ronbunshu, Vol. 69, No. 8, 2012, pp. 460-467. doi:10.1295/koron.69.460
[34] J. F. Revol and R. H. Marchessault, “In-Vitro Chiral Nematic Ordering of Chitin Crystallites,” International Journal of Biological Macromolecules, Vol. 15, No. 6, 1993, pp. 329-335. doi:10.1016/0141-8130(93)90049-R
[35] J. Li, J. F. Revol, E. Naranjo and R. H. Marchessault, “Effect of Electrostatic Interaction on Phase Separation of Chitin Crystallite Suspensions,” International Journal of Biological Macromolecules, Vol. 18, No. 3, 1996, pp. 177-187. doi:10.1016/0141-8130(95)01066-1
[36] J. Li, J. F. Revol and R. H. Marchessault, “Effect of Degree of Deacetylation of α-Chitin on the Properties of Chitin Crystallites,” Journal of Applied Polymer Science, Vol. 65, No. 2, 1997, pp. 373-380. doi:10.1002/(SICI)1097-4628(19970711)65:2<373::AID-APP18>3.0.CO;2-0
[37] J. D. Goodrich and W. T. Winter, “α-Chitin Nanocrystals Prepared from Shrimp Shells and Their Specific Surface Area Measurement,” Biomacromolecules, Vol. 8, No. 1, 2007, pp. 252-257. doi:10.1021/bm0603589
[38] Y. Fan, T. Saito and A. Isogai, “Chitin Nanocrystals Prepared by TEMPO-Mediated Oxidation of α-Chitin,” Biomacromolecules, Vol. 9, No. 1, 2008, pp. 192-198. doi:10.1021/bm700966g
[39] Y. Fan, T. Saito and A. Isogai, “TEMPO-Mediated Oxidation of α-Chitin to Prepare Individual Nanofibers,” Carbohydrate Polymers, Vol. 77, No. 4, 2009, pp. 832-838. doi:10.1016/j.carbpol.2009.03.008
[40] S. Ifuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto and H. Yano, “Preparation of Chitin Nanofibers with a Uniform Width as α-Chitin from Crab Shells,” Biomacromolecules, Vol. 10, No. 6, 2009, pp. 1584-1588. doi:10.1021/bm900163d
[41] S. Ifuku, M. Nogi, M. Yoshioka, M. Morimoto, H. Yano and H. Saimoto, “Fibrillation of Dried Chitin into 10-20 nm Nanofibers by a Simple Grinding Method under Acidic Conditions,” Carbohydrate Polymers, Vol. 81, No. 1, 2010, pp. 134-139. doi:10.1016/j.carbpol.2010.02.006
[42] J. D. Schiffman, L. A. Stulga and C. L. Schauer, “Chitin and Chitosan: Transformations Due to the Electrospinning Process,” Polymer Engineering and Science, Vol. 49, No. 10, 2009, pp. 1918-1928. doi:10.1002/pen.21434
[43] R. Jayakumar, M. Prabaharan, S. V. Nair and H. Tamura, “Novel Chitin and Chitosan Nanofibers in Biomedical Applications,” Biotechnology Advances, Vol. 28, No. 1, 2010, pp. 142-150. doi:10.1016/j.biotechadv.2009.11.001
[44] C. Zhong, A. Cooper, A. Kapetanovic, Z. Fang, M. Zhang and M. Rolandi, “A Facile Bottom-Up Route to Self-Assembled Biogenic Nanofibers,” Soft Matter, Vol. 6, No. 21, 2010, pp. 5298-5301. doi:10.1039/c0sm00450b
[45] C. Zhong, A. Kapetanovic, Y. Deng and M. Rolandi, “A Chitin Nanofiber Ink for Airbrushing, Replica Molding, and Microcontact Printing of Self-Assembled Macro-, Micro-, and Nanostructures,” Advanced Materials, Vol. 23, No. 41, 2011, pp. 4776-4781. doi:10.1002/adma.201102639
[46] J. Kadokawa, A. Takegawa, S. Mine and K. Prasad, “Preparation of Chitin Nanowhiskers Using an Ionic Liquid and Their Composite Materials with Poly(Viny Alcohol),” Carbohydrate Polymers, Vol. 84, No. 4, 2011, pp. 1408-1412. doi:10.1016/j.carbpol.2011.01.049
[47] Y. S. Vygodskii, E. L. Lozinskaya and A. S. Shaplov, “Ionic Liquids as Novel Reaction Media for the Synthesis of Condensation Polymers,” Macromolecular Rapid Communications, Vol. 23, No. 12, 2002, pp. 676-680. doi:10.1002/1521-3927(20020801)23:12<676::AID-MARC676>3.0.CO;2-2
[48] K. Kaifu, N. Nishi and T. Komai, “Preparation of Hexanoyl, Decanoyl, and Dodecanoylchitin,” Journal of Polymer Science: Polymer Chemistry Edition, Vol. 19, No. 9, 1981, pp. 2361-2363. doi:10.1002/pol.1981.170190921

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.