Share This Article:

Discrete Symmetry in Relativistic Quantum Mechanics

Abstract Full-Text HTML XML Download Download as PDF (Size:580KB) PP. 651-675
DOI: 10.4236/jmp.2013.45094    4,724 Downloads   7,255 Views   Citations

ABSTRACT

EPR experiment on system in 1998 [1] strongly hints that one should use operators and for the wavefunction (WF) of antiparticle. Further analysis on Klein-Gordon (KG) equation reveals that there is a discrete symmetry hiding in relativistic quantum mechanics (RQM) that PT=C. Here PT means the (newly defined) combined space-time inversion (with x-x,t-t), while C the transformation of WF Ψ between particle and its antiparticle whose definition is just residing in the above symmetry. After combining with Feshbach-Villars (FV) dissociation of KG equation (Ψ=φ+x) [2], this discrete symmetry can be rigorously reformulated by the invariance of coupling equation of φ and x under either the combined space-time inversion PT or the mass inversion (m-m), which makes the KG equation a self-consistent theory. Dirac equation is also discussed accordingly. Various applications of this discrete symmetry are discussed, including the prediction of antigravity between matter and antimatter as well as the reason why we believe neutrinos are likely the tachyons.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Ni, S. Chen and J. Xu, "Discrete Symmetry in Relativistic Quantum Mechanics," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 651-675. doi: 10.4236/jmp.2013.45094.

References

[1] Apostolakis, et al., (CPLEAR Collaboration) Physics Letters B, Vol. 422, 1998, pp. 339-348. doi:10.1016/S0370-2693(97)01545-1
[2] H. Feshbach and F. Villars, Review of Modern Physics, Vol. 30, 1958, pp. 24-45. doi:10.1103/RevModPhys.30.24
[3] T. D. Lee and C. N. Yang, Physical Review, Vol. 104, 1956, pp. 254-258.
[4] T. D. Lee and C. N. Yang, ibid, Vol. 105, 1957, pp. 1671-1675.
[5] T. D. Lee, R. Oehme and C. N. Yang, ibid, Vol. 106, 1957, pp. 340-345.
[6] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, Physical Review, Vol. 105, 1957, pp. 1413-1415. doi:10.1103/PhysRev.105.1413
[7] J. H. Christensen, J. W. Cronin, V. L. Fitch and R. Turlay, Physical Review Letters, Vol. 13, 1964, pp. 138-140. doi:10.1103/PhysRevLett.13.138
[8] K. R. Schubert, B. Wolff, J.-M. Gaillard, M. R. Jane, T. J. Ratcliffe and J.-P. Repellin, Physics Letters B, Vol. 31, 1970, pp. 662-665. doi:10.1016/0370-2693(70)90029-8
[9] J. Beringer, et al., (Particle Data Group) Physical Review D, Vol. 86, 2012, Article ID: 010001. doi:10.1103/PhysRevD.86.010001
[10] G. Lüders, Kgl. Danske Vidensk. Selsk. Mat.-Fys. Medd., Vol. 28, 1954.
[11] G. Lüders, Annals of Physics (New York), Vol. 2, 1957, pp. 1-15.
[12] W. Pauli, “Exclusion Principle, Lorentz Group and Reflection of Space-Time and Charge,” In: W. Pauli, L. Rosenfeld and V. Weisskopf, Eds., Niels Bohr and the Development of Physics, McGraw-Hill, New York, 1955, pp. 30-51.
[13] T. D. Lee and C. S. Wu, Annual Review of Nuclear Science, Vol. 15, 1965, pp. 381-476. doi:10.1146/annurev.ns.15.120165.002121
[14] A. Einstein, B. Podolsky and N. Rosen, Physical Review, Vol. 47, 1935, pp. 777-780. doi:10.1103/PhysRev.47.777
[15] D. Bohm, “Quantum Theory,” Prentice Hall, Upper Saddle River, 1956.
[16] J. S. Bell, Physics, Vol. 1, 1964, pp. 195-200.
[17] H. Guan, “Basic Concepts in Quantum Mechanics,” High Education Press, Beijing, 1990.
[18] G. J. Ni, H. Guan, W. M. Zhou and J. Yan, Chinese Physics Letters, Vol. 17, 2000, pp. 393-395. doi:10.1088/0256-307X/17/6/002
[19] O. Nachtmann, “Elementary Particle Physics: Concepts and Phenomena,” Springer-Verlag, Berlin, 1990.
[20] W. Greiner and B. Müller, “Gauge Theory of Weak Interactions,” Springer-Verlag, Berlin, 1993.
[21] E. J. Konopinski and H. M. Mahmaud, Physical Review, Vol. 92, 1953, pp. 1045-1049. doi:10.1103/PhysRev.92.1045
[22] G. J. Ni, Journal of Fudan University (Natural Science), No. 3-4, 1974, pp. 125-134.
[23] G. J. Ni and S. Q. Chen, Journal of Fudan University (Natural Science), Vol. 35, 1996, pp. 325-334.
[24] G. J. Ni and S. Q. Chen, “Relation between Space-Time Inversion and Particle-Antiparticle Symmetry and the Microscopic Essence of Special Relativity,” In: V. Dvoeglazov, Ed., Photon and Poincare Group, NOVA Science Publisher, New York, 1999, pp. 145-169.
[25] G. J. Ni and S. Q. Chen, “Advanced Quantum Mechanics,” Rinton Press, New Jersy, 2002.
[26] G. J. Ni, Progress in Physics, Vol. 23, 2003, pp. 484-503.
[27] G. J. Ni, “A New Insight into the Negative-Mass Paradox of Gravity and the Accelerating Universe,” In: V. V. Dvoeglazov and A. A. Espinoza Garrido, Eds., Relativity, Gravitation, Cosmology, NOVA Science Publisher, New York, 2004, pp. 123-136.
[28] G. J. Ni, J. J. Xu and S. Y. Lou, Chinese Physics B, Vol. 20, 2011, Article ID: 020302.
[29] J. J. Sakurai, “Advanced Quantum Mechanics,” Addison-Wesley Publishing Company, Boston, 1978.
[30] J. J. Sakurai, “Modern Quantum Mechanics,” John Wiley & Sons, Inc., NewYork, 1994.
[31] J. D. Bjorken and S. D. Drell, “Relativistic Quantum Mechanics,” McGraw-Hill, New York, 1964,
[32] J. D. Bjorken and S. D. Drell, “Relativistic Quantum Fields,” McGraw-Hill, New York, 1965.
[33] L. B. Okun, Physics Today, Vol. 42, 1989, pp. 31-36.
[34] G. Lochak, “De Broglie’s Initial Conception of De Broglie Waves,” In: S. Diner, D. Fargue, G. Lochak and F. Selleri, Eds., The Wave-Particle Dualism, D. Reidal Publishing Company, Dordrecht, 1984, pp. 1-25.
[35] G. J. Ni, W. M. Zhou and J. Yan, “Comparison among Klein-Gordon Equation, Dirac Equation and Relativistic Schrodinger Equation,” In: A. E. Chubykalo, V. V. Dvoeglazov, D. J. Ernst, V. G. Kadyshevsky and Y. S. Kim, Eds., Lorentz Group, CPT and Neutrinos, World Scientific, London, 2000, pp. 68-81.
[36] M. E. Peskin and D. V. Schroeder, “An Introdution to Quantum Field Theory,” Addison-Wesley Publishing Company, Boston, 1995.
[37] M. Jacob and G. C. Wicks, Annals of Physics (New York), Vol. 7, 1959, pp. 404-428. doi:10.1016/0003-4916(59)90051-X
[38] S. Weinberg, Physical Review Letters, Vol. 19, 1967, pp. 1264-1266. doi:10.1103/PhysRevLett.19.1264
[39] Z. Q. Shi and G. J. Ni, Chinese Physics Letters, Vol. 19, 2002, pp. 1427-1429.
[40] Z. Q. Shi and G. J. Ni, Annales de la Fondation Louis de Bloglie, Vol. 29, 2004, pp. 1057-1066.
[41] Z. Q. Shi and G. J. Ni, Handronic Journal, Vol. 29, 2006, pp. 401-407.
[42] Z. Q. Shi and G. J. Ni, “Frontiers in Horizons in World Physics,” Nova Science, Marselle, 2008, pp. 53-65.
[43] Z. Q. Shi and G. J. Ni, Modern Physics Letters A, Vol. 26, 2011, pp. 987-998. doi:10.1142/S0217732311035250
[44] A. Cho, Science, Vol. 326, 2009, pp. 1342-1343. doi:10.1126/science.326.5958.1342
[45] L. H. Ryder, “Quantum Field Theory,” Cambridge University Press, Cambridge, 1996. doi:10.1017/CBO9780511813900
[46] T. Chang and G. J. Ni, “An Explanation of Possible Negative Mass-Square of Neutrinos,” FIZIKA B (Zagreb), Vol. 11, 2002, pp. 49-56. arXiv.org:hep-ph/0009291
[47] G. J. Ni and T. Chang, Journal of Shaanxi Normal University (Natural Science), Vol. 30, No. 3, 2002, pp. 32-39.
[48] G. J. Ni, Journal of Shaanxi Normal University (Natural Science), Vol. 29, No. 1, 2001, pp. 1-5.
[49] G. J. Ni, Journal of Shaanxi Normal University (Natural Science), Vol. 30, No. 4, 2002, pp. 1-6.
[50] G. J. Ni, “A Minimal Three-Flavor Model for Neutrino Oscillation Based on Superluminal Property,” In: V. V. Dvoeglazov and A. A. Espinoza, Eds., Relativity, Gravitation, Cosmology, NOVA Science Publisher, New York, 2004, pp. 137-148.
[51] G. J. Ni, “Principle of Relativity in Physics and in Epistemology,” In: V. Dvoeglazov, Ed., Relativity, Gravitation, Cosmology: New Development, NOVA Science Publisher, New York, 2010, pp. 237-252.
[52] G. J. Ni, “Cosmic Ray Spectrum and Tachyonic Neutrino,” In: V. V. Dvoeglazov and A. A. Espinoza, Eds., Relativity, Gravitation, Cosmology: New Development, NOVA Science Publisher, New York, 2010, pp. 253-265.
[53] M. Goldhaber, L. Grodgins and A. W. Sunyar, Physical Review, Vol. 109, 1958, pp. 1015-1017. doi:10.1103/PhysRev.109.1015
[54] S. Weinberg, “Gravitation and Cosmology,” John Wiley, New York, 1972.
[55] Z. M. Xu and X. J. Wu, “General Relativity and Contemporary Cosmology,” Press of Nanjing Normal University, Nanjing, 1999.
[56] T. P. Cheng, “Relativity, Gravitation and Cosmology”, 2nd Edition, Oxford University Press, Oxford, 2010.
[57] K. Jagannathan and L. P. S. Singh, Physical Review D, Vol. 33, 1986, pp. 2475-2477. doi:10.1103/PhysRevD.33.2475
[58] M. Villata, Europhysics Letters, Vol. 94, 2011, pp. 1-6. doi:10.1209/0295-5075/94/20001
[59] A. Kellerbauer, et al., Nuclear Instruments and Methods in Physics Research Section B, Vol. 266, 2008, pp. 351-356. doi:10.1016/j.nimb.2007.12.010
[60] O. Klein, Zeitschrift für Physik, Vol. 53, 1929, pp. 157-165. doi:10.1007/BF01339716
[61] W. Greiner, “Relativistic Quantum Mechanics,” Springer-Verlag, Berlin, 1990.
[62] W. Greiner, B. Müller and J. Rafelski, “Quantum Electrodynamics of Strong Fields,” Springer-Verlag, Berlin, 1985.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.