A Comparison of MODIS LST Retrievals with in Situ Observations from AWS over the Lambert Glacier Basin, East Antarctica

Abstract

Satellite-derived surface temperature data is increasingly required to supplement the limited weather stations for the assessment of temperature trend over the data-sparse Antarctic Ice Sheet. To accomplish this, it is essential to assess the relationship and difference between satellite-based land-surface temperature (LST) retrieval and air temperature observation. In this study, we made a comparison between monthly averaged LST from Moderate Resolution Imaging Spectroradiometer (MODIS) and the corresponding air temperature at the nominal heights of 1 m and 2 m from automatic weather stations (AWSs) over the Lambert Glacier basin, East Antarctica. This comparison reveals a statistically significant correlation between the two types of temperature measurements with correlation coefficient (R) above 0.6. Also, the time difference between satellite overpass and air temperature observation is not critical for the R values. Although MODIS LST evidently deviates from air temperature (Mean difference fluctuates from 2.87°C to 8.08°C) probably due to the temperature inversion effect, heterogeneity in surface emissivity, representative of AWS measurements and satellite self limitation. MODIS LST measurements have a great potential for the accurate evaluation or monitoring of regional air temperature over Antarctica, and thus better improve current reconstruction of spatial and temporal reconstruction variability in Antarctic temperature.

Share and Cite:

Y. Wang, M. Wang and J. Zhao, "A Comparison of MODIS LST Retrievals with in Situ Observations from AWS over the Lambert Glacier Basin, East Antarctica," International Journal of Geosciences, Vol. 4 No. 3, 2013, pp. 611-617. doi: 10.4236/ijg.2013.43056.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. R. Savage, “Automatic Weather Station 1980-1981,” Antarctic Journal of the United States, Vol. 42, No. 5, 1981, pp. 56-62.
[2] I. Allison, “Automatic Weather Stations in the Antarctic,” Austral Meteorology Magazine, Vol. 31, No. 6, 1983, pp. 71-76.
[3] C. H. Rejimer, “Antarctic Meteorology: A study with Automatic Weather Stations,” Ph.D. Thesis, Utrecht University, Utrecht, 2001.
[4] D. H. Bromwich and R. L. Fogt, “Strong Trends in the Skill of the ERA-40 and NCEPNCAR Reanalyses in the High and Midlatitudes of the Southern Hemisphere, 1958-2001,” Journal of Climate, Vol. 17, No. 23, 2004, pp. 4603-4619. doi:10.1175/3241.1
[5] S. Rutherford, M. E. Mann, T. J. Osborn, K. R. Briffa, P.D. Jones, R. S. Bradley and M. K. Hughes. “Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Methodology, Predictor Network, Target Season and Target Domain,” Journal of Climate, Vol. 18, No. 13, 2005, pp. 2308-2329. doi:10.1175/JCLI3351.1
[6] M. E. Mann, S. Rutherford, E. Wahl and C. Ammann. “Robustness of Proxy-based Climate Field Reconstruction Methods,” Journal Geophysical Research, Vol. 112, No. D12, 2007, Article ID: D12109. doi:10.1029/2006JD008272
[7] J. C. Comiso, “Variability and Trends in Antarctic Surface Temperatures from in Situ and Satellite Infrared Measurements,” Journal of Climate, Vol. 13, No. 10, 2000, pp. 1674-1696. doi:10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2
[8] R. Kwok and J. C. Comiso, “Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation,” Geophysical Research Letters, Vol. 29, No. 14, 2002, pp. 30-33. doi:10.1029/2002GL015415
[9] D. P. Schneider, E. J. Steig and J. Comiso, “Recent Climate Variability in Antarctica from Satellite-Derived Temperature Data,” Journal of Climate, Vol. 17, No. 7, 2004, pp. 1569-1583. doi:10.1175/1520-0442(2004)017<1569:RCVIAF>2.0.CO;2
[10] E. J. Steig, D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso and D. T. Shindell, “Warming of the Antarctic Ice-Sheet Surface since the 1957 International Geophysical Year,” Nature, Vol. 457, No. 7228, 2009, pp. 459-463. doi:10.1038/nature07669
[11] A. J. Monaghan, D. H. Bromwich, W. Chapman and J. C. Comiso, “Recent Variability and Trends of Antarctic near Surface Temperature,” Journal of Geophysical Research, Vol. 113, Vol. 457, No. D4, 2008, Article ID: D04105. doi:10.1029/2007JD009094
[12] H. Liu, L. Wang and K. C. Jezek, “Spatiotemporal Variations of Snowmelt in Antarctica Derived from Satellite Scanning Multichannel Microwave Radiometer and Special Sensor Microwave Imager data (1978-2004),” Journal of Geophysical Research, Vol. 111, No. F1, 2006, Article ID: F01003. doi:10.1029/2005JF000318
[13] P. K. Meijgaard, “Insignificant Change in Antarctic Snowmelt Volume Since 1979,” Geophysical Research Letters, Vol. 39, No. 5788, 2012, Article ID: L01501. doi:10.1029/2011GL050207
[14] T. P. Albright, A. M Pidgeon, C. D. Rittenhouse, M. K. Claytonb, C. H. Flatherc, P. D. Culberta and V. C. Radeloffa, “Heat Waves Measured with MODIS Land Surface Temperature Data Predict Changes in Avian Community Structure,” Remote Sensing of Environment, Vol. 115, No. 1, 2011, pp. 245-254. doi:10.1016/j.rse.2010.08.024
[15] T. T. van Leeuwen, A. J. Frank, Y. F. Jin, P. Smyth, M. L. Goulden, G. R. van der Werf and J. T. Randerson, “Optimal Use of Land Surface Temperature Data to Detect Changes in Tropical Forest Cover,” Journal of Geophysical Research, Vol. 116, No. G02002, 2011, Article ID: G02002. doi:10.1029/2010JG001488
[16] A. Benali, A. C. Carvalho, J. P. Nunes, N. Carvalhais and A. Santos, “Estimating Air Surface Temperature in Portugal Using MODIS LST Data,” Remote Sensing of Environment, Vol. 124, No. 12, 2012, pp. 108-121. doi:10.1016/j.rse.2012.04.024
[17] M. C. Anderson and W. P. Kustas, “Mapping Evapotranspiration and Drought at Local to Continental Scales Using Thermal Remote Sensing,” IEEE Transactions on Geoscience and Remote Sensing, Boston, 6-11 July 2008.
[18] L. Campo1, F. Castelli, D. Entekhabi and F. Caparrini, “Land-Atmosphere Interactions in a High Resolution Atmospheric Simulation Coupled with a Surface Data Assimilation Scheme,” Natural Hazards and Earth System Sciences, Vol. 9, No. 9, 2009, pp. 1613-1624. doi:10.5194/nhess-9-1613-2009
[19] Z. Wan, Y. Zhang, Z. Li, R. Wanga, V. V. Salomonsonb, A. Yvesc, R. Bossenoc and J. F. Hanocqd, “Preliminary Estimate of Calibration of the Moderate Resolution Imaging Spectroradiometer Thermal Infrared Data Using Lake Titicaca,” Remote Sensing Environment, Vol. 80, No. 1, 2002, pp. 497-515. doi:10.1016/S0034-4257(01)00327-3
[20] Z. Wan, Y. Zhang, Q. Zhang and Z.-L. Li, “Validation of the Land Surface Temperature Products Retrieved from Terra Moderate Resolution Imaging Spectroradiometer Data,” Remote Sensing of Environment, Vol. 83, No. 1, 2002, pp. 163-180. doi:10.1016/S0034-4257(02)00093-7
[21] Z. Wan, “New Refinements and Validation of the MODIS Land Surface Temperature/Emissivity Products,” Remote Sensing of Environment, Vol. 112, No. 1, 2008, pp. 59-74. doi:10.1016/j.rse.2006.06.026
[22] E. T. Crosman and J. D. Horel, “MODIS-Derived Surface Temperature of the Great Salt Lake,” Remote Sensing of Environment, Vol. 113, No. 1, 2009, pp. 73-81. doi:10.1016/j.rse.2008.08.013
[23] C. Coll, Z. Wan and J. M. Galvem, “Temperature-Based and Radiance-Based Validations of the V5 MODIS Land Surface Temperature Product,” Journal of Geophysical Research, Vol. 114, No. D20, 2009, Article ID: D20102. doi:10.1029/2009JD012038
[24] J. M. Galve, C. Coll, V. Caselles, E. Valor, R. Niclòs, J. M. Sánchez and M. Mira, “Simulation and Validation of Land Surface Temperature Algorithms for MODIS and AATSR Data,” Tethys, Vol. 4, No. 4, 2007, pp. 27-32. doi:10.3369/tethys.2007.4.04
[25] Z. Wan, Y. Zhang, Q. Zhang and Z.-L. Li, “Quality Assessment and Validation of the MODIS Global Land Surface Temperature,” Internal Journal of Remote Sensing, Vol. 25, No. 1, 2004, pp. 261-274. doi:10.1080/0143116031000116417
[26] Z. Wan and Z.-L. Li, “Radiance-based Validation of the V5 MODIS Land-surface Temperature Product,” Internal Journal of Remote Sensing, Vol. 29, No. 17-18, 2008, pp. 5373-5395. doi:10.1080/01431160802036565
[27] D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman and K. Steffen, “Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland,” Remote Sensing of Environment, Vol. 112, No. 10, 2008, pp. 3739-3749. doi:10.1016/j.rse.2008.05.007
[28] S. Westermann, M. Langer and J. Boike, “Spatial and Temporal Variations of Summer Surface Temperatures of High-Arctic Tundra on Svalbard—Implications for MODIS LST Based Permafrost Monitoring,” Remote Sensing of Environment, Vol. 115, No. 3, 2011, pp. 908-922. doi:10.1016/j.rse.2010.11.018
[29] S. Hachem, C. R. Duguay and M. Allard, “Comparison of MODIS-Derived Land Surface Temperatures with Ground Surface and Air Temperature Measurements in Continuous Permafrost Terrain,” The Cryosphere, Vol. 6, No. 1, 2012, pp. 51-69. doi:10.5194/tc-6-51-2012
[30] R. Manson, R. Coleman, P. Morgan and M. King, “Ice Velocities of the Lambert Glacier from Static GPS Observations,” Earth Planets Space, Vol. 52, No. 11, 2000, pp. 1031-1036.
[31] H. A. Fricker, G. Hyland, R. Coleman and W. Young, “Digital Elevation Models for the Lambert Glacier-Amery Ice Shelf System, East Antarctica, from ERS-1 Satellite Radar Altimetry,” Journal of Glaciology, Vol. 46, No. 155, 2000, pp. 553-560. doi:10.3189/172756500781832639
[32] C. Vancutsem, P. Ceccato, T. Dinku and J. Connor, “Evaluation of MODIS Land Surface Temperature Data to Estimate Air Temperature in Different Ecosystems over Africa,” Remote Sensing of Environment, Vol. 114, No. 2, 2010, pp. 449-465. doi:10.1016/j.rse.2009.10.002
[33] G. V. Mostovoy, R. L. King, K. R. Reddy and V. Gopal Kakani, “Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi,” GIScience and Remote Sensing, Vol. 43, No. 1, 2006, pp. 78-110. doi:10.2747/1548-1603.43.1.78
[34] K. Zaksek and M. Schroedter-Homscheidt, “Parameterization of Air Temperature in High Temporal and Spatial Resolution from a Combination of the SEVIRI and MODIS Instruments,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 64, No. 4, 2009, pp. 414-421. doi:10.1016/j.isprsjprs.2009.02.006
[35] Y. Zhang, D. J. Seidel, Y-H. Zhang, D. J. Seidel J.-C. Golaz, C. Deser and R. A. Tomas, “Climatological Characteristics of Arctic and Antarctic Surface-Based Inversions,” Journal of Climate, Vol. 24, No. 19, 2011, pp. 5167-5186. doi:10.1175/2011JCLI4004.1
[36] S. R. Hudson and R. E. Brandt, “A Look at the Surface-Based Temperature Inversion over the Antarctic Plateau,” Journal of Climate, Vol. 18, No. 11, 2005, pp. 1673-1696. doi:10.1175/JCLI3360.1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.