Molecular signaling of 5-HT1A and presence of serotonergic cells in the fetal cerebral cortex

Abstract

Early appearance of the serotonergic system in the fetal brain and the various effects of serotonin (5-HT) on brain morphogenesis, have given support to a neurotrophic role of serotonin. This function of serotonin is accomplished through a system of serotonin nerve terminals in the target regions that involves various 5-HT receptors. In visual, auditory and somatosensory cortex an early and intense serotonergic innervation is particularly important. The neuronal somata of these terminals are normally located in the mesencephalon and they have not been observed in the maturing cerebral cortex, neither in the adult brain. By using immunolabeling techniques, fluorescence and confocal microscopy, we observe the presence of both, 5-HT terminals and 5-HT cells in mesencephalon (Me, E17) and in the neopallium (Np, E13-E16) cocultures. Cells immunopositive to 5-HT and to tryptophan-5-hydroxilase are also observed in the Np on day 12 of culture. These results concerning the unexpected presence of serotonergic cells in the fetal cerebral cortex are interesting and may be of importance in corticogenesis. As it happens with other elements of the serotonergic system, the presence of these phenotypically serotonergic cells in the early cerebral cortex may be transitory and probably supporting cortex maturation processes. The molecular signaling path of the 5-HT1A receptor has also been identified.

Share and Cite:

Oca, A. , Gutiérrez, G. and Rodríguez, J. (2013) Molecular signaling of 5-HT1A and presence of serotonergic cells in the fetal cerebral cortex. World Journal of Neuroscience, 3, 76-82. doi: 10.4236/wjns.2013.32011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tecott, L., Shtrom, S. and Julius, D. (1995) Expression of a serotonin-gated ion chanel in embryonic neural and nonneural tissues. Molecular and Cellular Neuroscience, 6, 43-55.
[2] Wallace, J.A. and Lauder, J.M. (1983) Development of the serotonergic system in the rat embryo: An immuno-cytochemical study. Brain Research Bulletin, 10, 459-479. doi:10.1016/0361-9230(83)90144-2
[3] Mercado, C.R. and Hernández, R.J. (1992) A molecular recognition system of serotonin in rat fetal axonal growth cones: Uptake and high affinity binding. Developmental Brain Research, 69, 133-137. doi:10.1016/0165-3806(92)90130-O
[4] Whitaker-Azmitia, P.M. and Azmitia, E.C. (1986) Auto-regulation of fetal serotonergic neuronal development: Role of high affinity serotonin receptors. Neuroscience Letters, 67, 307-312.
[5] Nguyen, L., Rigo, J.M., Rocher, V., Belachew, S., Malgrange, B., Rogister, B., Leprince, P. and Moonen, G.L. (2001) Neurotransmitters as early signals for central nervous system development. Cell and Tissue Research, 305, 187-202. doi:10.1007/s004410000343
[6] Kojic, L., Dick, R.H., Gu, Q., Douglas, R.M., Matsubara, J. and Cynader, M.S. (2000) Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proceedings of the National Academy of Sciences, 97, 1841-1844. doi:10.1073/pnas.97.4.1841
[7] Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C. and Gaspar, P. (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: Role of a serotonin excess during the critical period. Neuron, 16, 97-307. doi:10.1016/S0896-6273(00)80048-3
[8] Mercado, R., Florán, B. and Hernández, R.J. (1998) Regulated release of serotonin from axonal growth cones isolated from the fetal rat brain. Neurochemistry International, 32, 103-106. doi:10.1016/S0197-0186(97)00039-9
[9] D’amato, R.J., Blue, M.E., Larget, B.L., Ledbetter, D.J., Molliver, M.E. and Snyder, S.H. (1987) Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas. Proceedings of the National Academy of Sciences of the United States, 84, 4322-4326. doi:10.1073/pnas.84.12.4322
[10] Zhou, F.C., Sari, Y. and Zhang, J.K. (2000) Expression of serotonin transporter protein in developing brain. Developmental Brain Research, 119, 33-45. doi:10.1016/S0165-3806(99)00152-2
[11] Nakazawa, M., Koh, T., Kani, K. and Maeda, T. (1992) Transient patterns of serotonergic innervation in the rat visual cortex: Normal development and effects of neonatal enucleation. Developmental Brain Research, 66, 77-90. doi:10.1016/0165-3806(92)90143-K
[12] Chubakov, A.R., Gromova, E.A., Konovalov, G.V., Chumasov, E.I. and Sarkisova, E.F. (1985) Effect of serotonin on the development of a rat cerebral cortex tissue culture. Neuroscience and Behavioral Physiology, 35, 926-934.
[13] Mazer, C., Muneyyirci, J., Taheny, K., Raio, N., Borella, A. and Whitaker-Azmitia, P. (1997) Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Research, 760, 68-73. doi:10.1016/S0006-8993(97)00297-7
[14] Lebrand, C., Cases, O., Adelbretch, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I. and Gaspar, P. (1996) Transient uptake and storage of serotonin in developing thalamic neurons. Neuron, 17, 823-835. doi:10.1016/S0896-6273(00)80215-9
[15] Manjarrez, G.G., Manuel, A.L., Mercado, C.R. and Hernández, R.J. (2003) Serotonergic receptors in the brain of in útero undernourished rats. International Journal of Developmental Neuroscience, 21, 283-289. doi:10.1016/S0736-5748(03)00034-0
[16] Super, H., Soriano, E. and Uylings, H.B.M. (1998) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Research Reviews, 27, 40-64. doi:10.1016/S0165-0173(98)00005-8
[17] Secevic, N. and Milosevic, A. (1985) Initial development of gamma-aminobutyric acid immunoreactivity in the human cerebral cortex. Developmental Brain Research, 23, 1-159.
[18] Berger, B., Verney, C., Gaspar, P. and Febvret, A. (1985) Transient expresión of tyrosine-hydroxylase immunore-activity in some neurons of the rat neocortex turing posnatal development. Developmental Brain Research, 23, 141-144. doi:10.1016/0165-3806(85)90013-6
[19] Le Douarin, N.M. and Teillet, M.A. (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. Journal of Embryology and Experimental Morphology, 30, 31-48.
[20] Patterson, P.H. (1978) Environmental determination of autonomic neurotransmitter functions. Annual Review of Neuroscience, 1, 1-17. doi:10.1146/annurev.ne.01.030178.000245
[21] Stoppini, L., Buchs, P.A. and Muller, D. (1991) A Simple Method for Organotypic Cultures of Nervous-Tissue. Journal of Neuroscience Methods, 7, 173-182. doi:10.1016/0165-0270(91)90128-M
[22] Foster, G.A. (1998) Chemical neuroanatomy of the prenatal rat brain. A developmental atlas. Oxford University Press, Oxford, 1998, 260 Pages.
[23] Lavdas, A.A., Blue, M.E., Lincoln, J. and Parnavelas, J.G. (1997) Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures of the developing cerebral cortex. The Journal of Neuroscience, 17, 7872-7880.
[24] Gordon-Weeks, P.R. and Lockerbie, R.O. (1984) Isolation and partial characterization of neuronal growth cones from neonatal rat forebrain. Neuroscience, 13, 119-136. doi:10.1016/0306-4522(84)90264-1
[25] Haynes, L.W., Rushton, J.A., Perrins, M.F., Dyer, J.K., Jones, R. and Howell, R. (1994) Diploid and hyperdiploid rat Schwann cell strains displaying negative autoregulation of growth in vitro and myelin sheath-formation in vivo. Journal of Neuroscience Methods, 52, 119-127. doi:10.1016/0165-0270(94)90120-1
[26] Verney, C., Lebrand, C. and Gaspar, P. (2002) Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. The Anatomical Record, 267, 87-93. doi:10.1002/ar.10089
[27] Lidov, H.G.W. and Molliver, M.E. (1982) An immunohistochemical study of serotonin neuron development in the rat: Ascending pathways and terminal fields. Brain Research Bulletin, 8, 389-430. doi:10.1016/0361-9230(82)90077-6
[28] Lidov, H.G.W. and Molliver, M.E. (1982) Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Research Bulletin, 9, 559-604. doi:10.1016/0361-9230(82)90164-2
[29] Papadopoulos, G.C., Parnavelas, J.G. and Buijs, R.M. (1987) Light and electron microscopic immunocytochemical analysis of the serotonin innervation of the rat visual cortex. Journal of Neurocytology, 16, 883-892. doi:10.1007/BF01611992
[30] Hansson, S.R., Mezey, E. and Hoffman, B.J. (1998) Serotonin transporter messenger rna in the developing rat brain: Early expression in serotonergic neurons and transient expression in nonserotonergic neurons. Neuroscience, 83, 1185-1201. doi:10.1016/S0306-4522(97)00444-2
[31] Gaspar, P., Berger, B., Febvret, A., Vigny, A., Krieger-Poulet, M. and Borri-Voltattorni, C. (1987) Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: A novel catecholaminergic group? Neuroscience Letters, 80, 257-262. doi:10.1016/0304-3940(87)90464-2
[32] Chubakov, A.R., Gromova, E.A., Konovalov, G.V., Sarkisova, E.F. and Chumasov, E.I. (1986) The effect of serotonin on the morpho-functional development of rat cerebral neocortex in tissue culture. Brain Research, 369, 285-297. doi:10.1016/0006-8993(86)90537-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.