Share This Article:

Deposition of a-CNx:H Films Using Uniform Supermagnetron Plasma under a Stationary Magnet Field

Abstract Full-Text HTML XML Download Download as PDF (Size:202KB) PP. 587-590
DOI: 10.4236/jmp.2013.45083    3,428 Downloads   4,838 Views   Citations

ABSTRACT

By generating closed-loop electron E × B drift over the front and back surface of a band magnetron cathode, a uniform magnetron plasma can be formed over the front surface. Here, we attempted to generate a uniform supermagnetron plasma under a stationary magnetic field by situating two such band magnetron cathodes face-to-face in parallel. Performing uniform supermagnetron plasma chemical vapor deposition (CVD) with tetraethylorthosilicate (TEOS)/O2 CVD, SiO2 films with good uniformity (±5%) at the central region of the cathode could be achieved under a stationary magnetic field of about 160 G. Using this supermagnetron plasma CVD apparatus, a-CNx:H films were then deposited to investigate their characteristics using isobutane (i-C4H10)/N2 mixed gases. A relatively high deposition rate of about 100 nm/min was obtained. The a-CNx:H films obtained had a hardness of about 25 GPa, higher than that of glass (22 GPa).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Kinoshita, S. Yagi and M. Sakurai, "Deposition of a-CNx:H Films Using Uniform Supermagnetron Plasma under a Stationary Magnet Field," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 587-590. doi: 10.4236/jmp.2013.45083.

References

[1] M. Zhang, Y. Nakayama and M. Kume, Solid State Communications, Vol. 110, 1999, pp. 679-683. doi:10.1016/S0038-1098(99)00142-8
[2] R. Reyes, C. Legnani, P. M. Ribeiro Pinto, M. Cremona, P. J. G. de Araújo and C. A. Achete, Applied Physics Letters, Vol. 82, 2003, pp. 4017-4019. doi:10.1063/1.1581000
[3] K. Sakurai, H. Kinoshita, G. Ohno, Y. Nakanishi and M. Kubota, Japanese Journal of Applied Physics, Vol. 47, 2008, pp. 7216-7219. doi:10.1143/JJAP.47.7216
[4] H. Kinoshita and H. Suzuki, Journal of Modern Physics, Vol. 2, 2011, pp. 398-403. doi:10.4236/jmp.2011.25049
[5] J. Robertson, Journal of Vacuum Science and Technology B, Vol. 17, 1999, pp. 659-665. doi:10.1116/1.590613
[6] Y. Umehara, S. Murai, Y. Koide and M. Murakami, Diamond and Related Materials, Vol. 11, 2002, pp. 1429-1435. doi:10.1016/S0925-9635(02)00042-0
[7] H. Kinoshita, M. Yamashita and T. Yamaguchi, Japanese Journal of Applied Physics, Vol. 45, 2006, pp. 8401-8405. doi:10.1143/JJAP.45.8401
[8] H. Kinoshita, T. Ishida and S. Ohno, Journal of Applied Physics, Vol. 62, 1987, pp. 4269-4272. doi:10.1063/1.339100
[9] K. E. Davies, M. Gross and C. M. Horwitz, Journal of Vacuum Science and Technology A, Vol. 11, 1993, pp. 2752-2757. doi:10.1116/1.578637
[10] S. Bui, J. Sasserath and E. Ghanbari, Journal of Vacuum Science and Technology A, Vol. 10, 1992, pp. 1238-1243. doi:10.1116/1.578233
[11] H. Kinoshita, S. Nomura and M. Honda, Journal of Vacuum Science and Technology A, Vol. 18, 2000, pp. 367-371. doi:10.1116/1.582194
[12] K. Sano, S. Hayashi, S. Wickramanayaka and Y. Hatanaka, Thin Solid Films, Vol. 281-282, 1996, pp. 397-400. doi:10.1016/0040-6090(96)08701-9

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.