Downregulation of Nrf2 and HO-1 expression contributes to oxidative stress in type 2 diabetes mellitus: A study in Juana Koslay City, San Luis, Argentina

Abstract

Oxidative stress is associated with diabetes mellitus, a condition characterized by increased prevalence and progression rate of cardiovascular disease. NFE2-related factor 2 (Nrf2) is a master regulator of cellular detoxification responses and redox status. The aim of this study was to examine associations between type 2 Diabetes Mellitus (T2DM), oxidative stress and the expression of NFE2-related factor 2 (Nrf2) in a population of diabetic patients living in Juana Koslay City, San Luis, Argentina. In addition, we evaluated the functional relevance of Nrf2 by measuring the HO-1 expression among persons with type 2 diabetes. We measured clinical and biochemical parameters related to lipid metabolism and oxidative stress in a population of Type 2 Diabetes Mellitus patients (T2DM, n = 40) and controls (Co, n = 30). Compared to Co, T2DM patients had higher fasting serum glucose, glycated hemoglobin, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and thiobarbituric acid reactive substances and lower high-density lipoprotein cholesterol. T2DM individuals had also higher atherogenic index and body mass index than controls. We also founded that HO-1 mRNA in whole blood was lower in T2DM than controls, suggesting that T2DM may have an altered antioxidant response to oxidative stress. Interestingly, we found reduced Nrf2 mRNA in whole blood from T2DM compared to Co. The results from this study provide novel evidence that genes associated to antioxidant defense mechanisms are markedly reduced in patients with type 2 diabetes, and that the reduction in the expression of these genes could be associated to hyperglycemia and increased levels of MDA. Linear regression analysis revealed that there was a strong and positive correlation between the changes of Nrf2 and HO-1 expression levels.

Share and Cite:

Siewert, S. , González, I. , Santillán, L. , Lucero, R. , Ojeda, M. and Gimenez, M. (2013) Downregulation of Nrf2 and HO-1 expression contributes to oxidative stress in type 2 diabetes mellitus: A study in Juana Koslay City, San Luis, Argentina. Journal of Diabetes Mellitus, 3, 71-78. doi: 10.4236/jdm.2013.32011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Baynes, J.W. and Thorpe, S.R. (1999) Role of oxidative stress in diabetic complications: A new perspective of an old paradigm. Diabetes, 48, 1-9. doi:10.2337/diabetes.48.1.1
[2] Evans, J.L., Goldfine, I.D., Maddux, B.A. and Grodsky, G.M. (2002) Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23, 599-622. doi:10.1210/er.2001-0039
[3] Hooper, P.L. (2003) Diabetes, nitric oxide, and heat shock proteins. Diabetes Care, 26, 951-952. doi:10.2337/diacare.26.3.951
[4] Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kanety, H. and Bashan, N. (1998) Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes, 47, 1562-1569. doi:10.2337/diabetes.47.10.1562
[5] King, G.L. and Loeken, M.R. (2004) Hyperglycemiainduced oxidative stress in diabetic complications. Histochemistry and Cell Biology, 122, 333-338. doi:10.1007/s00418-004-0678-9
[6] Jeong, I.K. and King, G.L. (2011) New perspectives on diabetic vascular complications: The loss of endogenous protective factors induced by hyperglycemia. Diabetes and Metabolism Journal, 35, 8-11. doi:10.4093/dmj.2011.35.1.8
[7] Matough, F.A., Budin, S.B., Hamid, Z.A., Alwahaibi, N. and Mohamed, J. (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos University Medical Journal, 12, 5-18.
[8] Nguyen, T., Nioi, P. and Pickett, C.B. (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biolpgical Chemistry, 284, 13291-13295. doi:10.1074/jbc.R900010200
[9] Sykiotis, G.P., Habeos, I.G., Samuelson, A.V. and Bohmann, D. (2011) The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Current Opinion in Clinical Nutrition and Metabolic Care, 14, 41-48.
[10] McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J.D. (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. Journal of Biolpgical Chemistry, 278, 21592-21600. doi:10.1074/jbc.M300931200
[11] Donovan, E.L., McCord, J.M., Reuland, D.J., Miller, B.F. and Hamilton, K.L. (2012) Phytochemical activation of Nrf2 protects human coronary artery endothelial cells against an oxidative challenge. Oxidative Medicine and Cellular Longevity, 2012, 9. doi:10.1155/2012/132931
[12] Deshane, J., Wright, M. and Agarwal, A. (2005) Heme oxygenase-1 expression in disease states. Acta Biochimica Polonica, 52, 273-284.
[13] Maines, M.D. (1997) The heme oxygenase system: A regulator of second messenger gases. Annual Review of Pharmacology and Toxicology, 37, 517-554. doi:10.1146/annurev.pharmtox.37.1.517
[14] Otterbein, L.E., Soares, M.P., Yamashita, K. and Bach, F.H. (2003) Heme oxygenase-1: Unleashing the protective properties of heme. Trends in Immunology, 24, 449-455. doi:10.1016/S1471-4906(03)00181-9
[15] Otterbein, L.E. and Choi, A.M. (2000) Heme oxygenase: colors of defense against cellular stress. American Journal of Physiology, Lung Cellular and Molecular Physiology, 279, L1029-L1037.
[16] Immenschuh, S. and Ramadori, G. (2000) Gene regulation of heme oxygenase-1 as a therapeutic target. Biochemical Pharmacology, 60, 1121-1128. doi:10.1016/S0006-2952(00)00443-3
[17] Song, F., Qi, X., Chen, W., Jia, W., Yao, P., Nussler, A.K., Sun, X. and Liu, L. ((2007) Effect of Momordica grosvenori on oxidative stress pathways in renal mitochondria of normal and alloxan-induced diabetic mice. Involvement of heme oxygenase-1. European Journal of Nutrition, 46, 61-69. doi:10.1007/s00394-006-0632-9
[18] The Expert Committee of the Diagnosis and Classification of Diabetes Mellitus. (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 20, 1183-1197.
[19] Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18, 499-502.
[20] DeFronzo, R.A. and Ferrannini, E. (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 14, 173-194. doi:10.2337/diacare.14.3.173
[21] Giugliano, D., Ceriello, A. and Paolisso, G. (1996) Oxidative stress and diabetic vascular complications. Diabetes Care, 19, 257-267. doi:10.2337/diacare.19.3.257
[22] Mahboob, M., Rahman, M.F. and Grover, P. (2005) Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Medical Journal, 46, 322-324.
[23] Maritim, A.C., Sanders, R.A. and Watkins, J.B. (2003) Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17, 24-38. doi:10.1002/jbt.10058
[24] Unlü?er?i, Y., Bekpinar, S. and Ko?ak, H. (2000) Testis glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase activities in aminoguanidine-treated diabetic rats. Archives of Biochemistry and Biophysics, 379, 217-220. doi:10.1006/abbi.2000.1876
[25] Ragheb, R., Shanab, G.M., Medhat, A.M., Seoudi, D.M., Adeli, K. and Fantus, I.G. (2009) Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: Evidence for PKC activation and oxidative stress activated signaling pathways. Biochemical and Biophysical Research Communications, 389, 211-216. doi:10.1016/j.bbrc.2009.08.106
[26] Kobayashi, A., Ohta, T. and Yamamoto, M. (2004) Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods in Enzymology, 378, 273-286. doi:10.1016/S0076-6879(04)78021-0
[27] Zhang, D.D. (2006) Mechanistic studies of the Nrf2-KEAP1 signaling pathway. Drug Metabolism Reviews, 38, 769-789. doi:10.1080/03602530600971974
[28] Motohashi, H. and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10, 549-557. doi:10.1016/j.molmed.2004.09.003
[29] Vomhof-Dekrey, E.E. and Picklo Sr., M.J. (2012) The Nrf2-antioxidant response element pathway: A target for regulating energy metabolism. Journal of Nutritional Biochemistry, 23, 1201-1206. doi:10.1016/j.jnutbio.2012.03.005
[30] He, M., Siow, R.C., Sugden, D., Gao, L., Cheng, X. and Mann, G.E. (2011) Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: A role for Nrf2 in vascular protection in diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 21, 277-285.
[31] Kadl, A., Meher, A.K., Sharma, P.R., Lee, M.Y., Doran, A.C., Johnstone, S.R., Elliott, M.R., Gruber, F., Han, J., Chen, W., Kensler, T., Ravichandran, K.S., Isakson, B.E., Wamhoff, B.R. and Leitinger, N. (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circulation Research, 107, 737-746. doi:10.1161/CIRCRESAHA.109.215715
[32] Warabi, E., Takabe, W., Minami, T., Inoue, K., Itoh, K., Yamamoto, M., Ishii, T., Kodama, T. and Noguchi, N. (2007) Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: Role of reactive oxygen/nitrogen species. Free Radical Biology and Medicine, 42, 260-269. doi:10.1016/j.freeradbiomed.2006.10.043
[33] Jyrkkanen, H.K., Kansanen, E., Inkala, M., Kivela, A.M., Hurttila, H., Heinonen, S.E., Goldsteins, G., Jauhiainen, S., Tiainen, S., Makkonen, H., Oskolkova, O., Afonyushkin, T., Koistinaho, J., Yamamoto, M., Bochkov. V.N., Yl?-Herttuala, S. and Levonen, A.L. (2008) Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circulation Research, 103, e1-e9. doi:10.1161/CIRCRESAHA.108.176883
[34] Ungvari, Z., Bailey-Downs, L., Gautam, T., Jimenez, R., Losonczy, G., Zhang, C., Ballabh P., Recchia, F.A., Wilkerson, D.C., Sonntag, W.E., Pearson, K., de Cabo, R. and Csiszar, A. (2011) Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. American Journal of Physiology, 300, H1133-H1140. doi:10.1152/ajp heart.00402.2010
[35] Adaikalakoteswari, A., Balasubramanyam, M., Rema, M. and Mohan, V. (2006) Differential gene expression of NADPH oxidase (p22phox) and hemoxygenase-1 in patients with type 2 diabetes and microangiopathy. Diabetic Medicine, 23, 666-674. doi:10.1111/j.1464-5491.2006.01879.x
[36] Bruce, C.R., Carey, A.L., Hawley, J.A. and Febbraio, M.A. (2003) Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: Evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes, 52, 2338-2345. doi:10.2337/diabetes.52.9.2338
[37] da Silva, J.L., Stoltz, R.A., Dunn, M.W., Abraham, N.G. and Shibahara, S. (1997) Diminished heme oxygenase-1 mRNA expression in RPE cells from diabetic donors as quantitated by competitive RT/PCR. Current Eye Research, 16, 380-386. doi:10.1076/ceyr.16.4.380.10695

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.