Role of sphingosine kinases and sphingosine 1-phosphate in mediating adipogenesis

Abstract

Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play in adipocyte terminal differentiation. Materials and Methods: The mouse 3T3-L1 cell line was used as a model for adipogenesis. Cells were harvested at specific time points after initation of differentiation, and SPHK activity was measured. 3T3-L1 cells were treated with S1P and expression of early adipogenesis transcription markers was measured by real time PCR. The expression of S1P-receptors (S1PRs) during differentiation was measured. Results: SPHK activity is induced when 3T3-L1 cells are treated with insulin, dexamethasone, and isobutylmethylxanthine to induce differentiation. SPHK1 is active in preadipocytes and early in the differentiation process. Both SPHK1 and SPHK2 isozymes contribute to activity in differentiated adipocytes. Inhibition of SPHK1 attenuates adipocyte differentiation; however, extracellular S1P does not rescue the effect of SPHK1 inhibition on adipogenesis. Although treatment of preadipocytes with S1P induced message expression of the early adipogenesis transcription factor CC AAT/ binding proteinalpha, continued treatment did not fully support the development of differentiated adipocytes. Sphingosine 1-phosphate receptors (S1PRs) are expressed in preadipocytes and message expression declines markedly during adipocyte differentiation. Conclusion: These results demonstrate that the contribution of SPHK and S1P to adipogenesis is mediated primarily through biphasic activation of SPHK1 and 2 with extracellular S1P and S1PRs playing little role during preadipocyte differentiation.

Share and Cite:

Mastrandrea, L. (2013) Role of sphingosine kinases and sphingosine 1-phosphate in mediating adipogenesis. Journal of Diabetes Mellitus, 3, 52-61. doi: 10.4236/jdm.2013.32009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Otto, T.C. and Lane, M.D. (2005) Adipose development: From stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40, 229-242. doi:10.1080/10409230591008189
[2] Feve, B. (2005) Adipogenesis: Cellular and molecular aspects. Best Practice & Research Clinical Endocrinology & Metabolism, 19, 483-499. doi:10.1016/j.beem.2005.07.007
[3] Alvarez, S.E., Milstien, S. and Spiegel, S. (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends in Endocrinology & Metabolism, 18, 300-307. doi:10.1016/j.tem.2007.07.005
[4] Spiegel, S. and Milstien, S. (2000) Sphingosine-1-phosphate: Signaling inside and out. FEBS Letters, 476, 55-57. doi:10.1016/S0014-5793(00)01670-7
[5] Spiegel, S. and Milstien, S. (2002) Sphingosine 1-phosphate, a key cell signaling molecule. The Journal of Biological Chemistry, 277, 25851-25854. doi:10.1074/jbc.R200007200
[6] Visentin, B., Vekich, J.A., Sibbald, B.J., Cavalli, A.L., Moreno, K.M., Matteo, R.G., et al. (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell, 9, 225-238. doi:10.1016/ j.ccr.2006.02.023
[7] Sachinidis, A., Gissel, C., Nierhoff, D., Hippler-Altenberg, R., Sauer, H., Wartenberg, M., et al. (2003) Identification of plateled-derived growth factor-bb as cardiogenesis-inducing factor in mouse embryonic stem cells under serum-free conditions. Cellular Physiology and Biochemistry, 13, 423-429. doi:10.1159/000075130
[8] Price, M.M., Kapitonov, D., Allegood, J., Milstien, S., Oskeritzian, C.A. and Spiegel, S. (2009) Sphingosine1-phosphate induces development of functionally mature chymase-expressing human mast cells from hematopoietic progenitors. FASEB Journal, 23, 3506-3515. doi:10.1096/fj.08-128900
[9] Blom, T., Slotte, J.P., Pitson, S.M. and Tornquist, K. (2005) Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: Endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cellular Signalling, 17, 827-836. doi:10.1016/j.cellsig.2004.11.022
[10] Van Brocklyn, J.R., Lee, M.J., Menzeleev, R., Olivera, A., Edsall, L.C., Cuvillier, O., et al. (1998) Dual actions of sphingosine-1-phosphate: Extracellular through the Gicoupled receptor Edg-1 and intracellular to regulate proliferation and survival. The Journal of Cell Biology, 142, 229-240. doi:10.1083/jcb.142.1.229
[11] Spiegel, S., Milstien, S. and Grant, S. (2012) Oncogene 31, 537-551.
[12] Kohama, T., Olivera, A., Edsall, L., Nagiec, M.M., Dickson, R. and Spiegel, S. (1998) Molecular Cloning and Functional Characterization of Murine Sphingosine Kinase. The Journal of Biological Chemistry, 273, 23722-23728. doi:10.1074/jbc.273.37.23722
[13] Liu, H., Sugiura, M., Nava, V.E., Edsall, L., Kono, K., Poulton, S., et al. (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. The Journal of Biological Chemistry, 275, 19513-19520. doi:10.1074/jbc.M002759200
[14] Liu, H., Chakravarty, D., Maceyka, M., Milstien, S., and Spiegel, S. (2002) Sphingosine kinases: A novel family of lipid kinases. Progress in Nucleic Acid Research and Molecular Biology, 71, 493-511. doi:10.1016/S0079-6603(02)71049-0
[15] Liu, H., Toman, R.E., Goparaju, S.K., Maceyka, M., Nava, V.E., Sankala, H., et al. (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. The Journal of Biological Chemistry, 278, 40330-40336. doi:10.1074/jbc.M304455200
[16] Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S. and Nakamura, S. (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. The Journal of Biological Chemistry, 278, 46832-46839. doi:10.1074/jbc.M306577200
[17] Mizugishi, K., Yamashita, T., Olivera, A., Miller, G.F., Spiegel, S. and Proia, R.L. (2005) Essential role for sphingosine kinases in neural and vascular development. Molecular and Cellular Biology, 25, 11113-11121. doi:10.1128/MCB.25.24.11113-11121.2005
[18] Hashimoto, T., Igarashi, J. and Kosaka, H. (2009) Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesis. Journal of Lipid Research, 50, 602-610. doi:10.1194/jlr.M800206-JLR200
[19] Jun, D.J., Lee, J.H., Choi, B.H., Koh, T.K., Ha, D.C., Jeong, M.W., et al. (2006) Sphingosine-1-phosphate modulates both lipolysis and leptin production in differentiated rat white adipocytes. Endocrinology, 147, 5835-5844. doi:10.1210/en.2006-0579
[20] Rosen, H., Gonzalez-Cabrera, P.J., Sanna, M.G. and Brown, S. (2009) Sphingosine 1-phosphate receptor signaling. Annual Review of Biochemistry, 78, 743-768. doi:10.1146/annurev. biochem.78.072407.103733
[21] Olivera, A., Kohama, T., Tu, Z., Milstien, S. and Spiegel, S. (1998) Purification and characterization of rat kidney sphingosine kinase. The Journal of Biological Chemistry, 273, 12576-12583. doi:10.1074/jbc.273.20.12576
[22] Mastrandrea, L.D., Sessanna, S.M. and Laychock, S.G. (2005) Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells response to cytokines. Diabetes, 54, 1429-1436. doi:10.2337/diabetes.54.5.1429
[23] Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W. and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Research, 4, 357-362. doi:10.1101/gr.4.6.357
[24] Laychock, S.G., Tian, Y. and Sessanna, S.M. (2003) Endothelial differentiation gene receptors in pancreatic islets and INS-1 cells. Diabetes, 52, 1986-1993. doi:10.2337/diabetes.52.8.1986
[25] Tang, Q.Q. and Lane, M.D. (1999) Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Development, 13, 2231-2241. doi:10.1101/gad.13.17.2231
[26] Machwate, M., Rodan, S.B., Rodan, G.A. and Harada, S.I. (1998) Sphingosine kinase mediates cyclic AMP suppression of apoptosis in rat periosteal cells. Molecular Pharmacology, 54, 70-77.
[27] Zhang, J.W., Klemm, D.J., Vinson, C. and Lane, M.D. (2004) Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. The Journal of Biological Chemistry, 279, 4471-4478.
[28] Johnson, K.R., Becker, K.P., Facchinetti, M.M., Hannun, Y.A. and Obeid, L.M. (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. The Journal of Biological Chemistry, 277, 35257-35262. doi:10.1074/jbc.M203033200
[29] Pitson, S.M., Xia, P., Leclerq, T.M., Moretti, P.A., Zebol, J.R., Lynn, H.E., et al. (2005) Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. Journal of Experimental Medicine, 201, 49-54. doi:10.1084/jem.20040559
[30] Prusty, D., Park, B.H., Davis, K.E. and Farmer, S.R. (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ(PPARγ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. The Journal of Biological Chemistry, 277, 46226-46232. doi:10.1074/jbc.M207776200
[31] Buehrer, B.M., Bardes, E.S. and Bell, R.M. (1996) Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity. Biochimica et Biophysica Acta, 1303, 233-242. doi:10.1016/0005-2760(96)00092-6
[32] Meyer zu Heringdorf, D., Lass, H., Alemany, R., Laser, K.T., Neumann, E., Zhang, C., et al. (1998) Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO Journal, 17, 2830-2837. doi:10.1093/emboj/17.10.2830
[33] Mastrandrea, L.D., Sessanna, S.M., Del Toro, A. and Laychock, S.G. (2010) ATP-independent glucose stimulation of sphingosine kinase in rat pancreatic islets. Journal of Lipid Research, 51, 2171-2180. doi:10.1194/jlr.M000802
[34] Nakade, Y., Banno, Y., T-Koizumi, K., Hagiwara, K., Sobue, S., Koda, M., et al. (2003) Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochimica et Biophysica Acta, 1635, 104-116. doi:10.1016/j.bbalip.2003.11.001
[35] Imagawa, M., Chiu, R. and Karin, M. (1987) Transcription factor AP-2 mediates induction by two different signal-transduction pathways: Protein kinase C and cAMP. Cell, 51, 251-260. doi:10.1016/0092-8674(87)90152-8
[36] Murakami, M., Ito, H., Hagiwara, K., Kobayashi, M., Hoshikawa, A., Takagi, A., et al. (2011) Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription. Journal of Cellular Biochemistry, 112, 3449-3458. doi:10.1002/jcb.23275
[37] French, K.J., Schrecengost, R.S., Lee, B.D., Zhuan, Y., Smith, S.N., Eberly, J.L., et al. (2003) Cancer Research, 63, 5962-5969.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.