Share This Article:

Graphene/Polypyrrole Nanocomposite as Electrochemical Supercapacitor Electrode: Electrochemical Impedance Studies

Abstract Full-Text HTML XML Download Download as PDF (Size:2315KB) PP. 81-87
DOI: 10.4236/graphene.2013.22012    9,292 Downloads   19,536 Views   Citations

ABSTRACT

Graphene-Polypyrrole (G/PPy) was synthesized by chemical oxidative polymerization method, and electrochemical impedance spectroscopy (EIS) analysis was employed to study the frequency response characteristics of supercapacitors based on G/PPy conducting polymer nanocomposite. It is found that a uniform G/PPy nanocomposite is formed with polypyrrole (PPy) being homogeneously surrounded by graphene nanosheets. The porous structure allowed electrolyte and ions diffusion in synthesized G/PPy nanocomposite. The metallic conductivity of Graphene-polypyrrole exhibited higher knee frequency at 125 Hz than the knee frequency of pristine PPy at 36 Hz. The high knee frequency of G/PPy supercapacitor is indicative of high power application and long cycle life. The G/PPy nanocomposite based supercapacitor with 1MH2SO4 as the electrolyte showed specific capacitances of 270 F/g at 0.1 Hz and112 F/g at 125 Hz.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. A. Basnayaka, M. K. Ram, L. Stefanakos and A. Kumar, "Graphene/Polypyrrole Nanocomposite as Electrochemical Supercapacitor Electrode: Electrochemical Impedance Studies," Graphene, Vol. 2 No. 2, 2013, pp. 81-87. doi: 10.4236/graphene.2013.22012.

References

[1] R. Kotz and M. Carlen, “Principles and Applications of Electrochemical Capacitors,” Electrochimica Acta, Vol. 45, No. 15, 2000, pp. 2483-2498.
[2] B. E. Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,” Springer, Berlin, 1999. doi:10.1007/978-1-4757-3058-6
[3] G. Wang, L. Zhang and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chemical Society Reviews, Vol. 41, No. 2, 2012, pp. 797-828. doi:10.1039/c1cs15060j
[4] I. H. Kim and K.-B. Kim, “Ruthenium Oxide Thin Film Electrodes for Supercapacitors,” Electrochemical and Solid-State Letters, Vol. 4, No. 5, 2001, pp. A62-A64. doi:10.1149/1.1359956
[5] G. Arabale, D. Wagh, M. Kulkarni, I. Mulla, S. Vernekar, K. Vijayamohanan and A. Rao, “Enhanced Supercapacitance of Multiwalled Carbon Nanotubes Functionalized with Ruthenium Oxide,” Chemical Physics Letters, Vol. 376, No. 1-2, 2003, pp. 207-213.
[6] Z. Algharaibeh, X. Liu and P. G. Pickup, “An Asymmetric Anthraquinone-Modified Carbon/Ruthenium Oxide Supercapacitor,” Journal of Power Sources, Vol. 187, No. 2, 2009, pp. 640-643. doi:10.1016/j.jpowsour.2008.11.012
[7] E. Frackowiaka and F. Beguinb, “Carbon Materials for the Electrochemical Storage of Energy in Capacitors,” Carbon, Vol. 39, No. 6, 2001, pp. 937-950. doi:10.1016/S0008-6223(00)00183-4
[8] H. Pan, J. Li and Y. Feng, “Carbon Nanotubes for Supercapacitor,” Nanoscale Research Letters, Vol. 5, No. 3, 2010, pp. 654-668. doi:10.1007/s11671-009-9508-2
[9] Y. Huang, J. Liang and Y. Chen, “An Overview of the Applications of Graphene-Based Materials in Supercapacitors,” Small, Vol. 8, No. 12, 2012, pp. 1805-1834. doi:10.1002/smll.201102635
[10] L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, et al., “Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO2 Nanorods Hybrid Structure,” ACS Nano, Vol. 6, No. 1, 2012, pp. 656-661. doi:10.1021/nn2041279
[11] M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray and A. H. Windle, “Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole,” Chemistry of Materials, Vol. 14, No. 4, 2002, pp. 1610-1613. doi:10.1021/cm010744r
[12] K. Zhang, L. L. Zhang, X. S. Zhao and J. Wu, “Graphene/ Polyaniline Nanofiber Composites as Supercapacitor Electrodes,” Chemistry of Materials, Vol. 22, No. 4, 2010, pp. 1392-1401. doi:10.1021/cm902876u
[13] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang, “A Nanostructured Graphene/Polyaniline Hybrid Material for Supercapacitors,” Nanoscale, Vol. 2, No. 10, 2010, p. 2164. doi:10.1039/c0nr00224k
[14] S. Bose, N. H. Kim, T. Kuila, K. Lau and J. H. Lee, “Electrochemical Performance of a Graphene-Polypyrrole Nanocomposite as a Supercapacitor Electrode,” Nano-Technology, Vol. 22, No. 29, 2011, Article ID: 295202. doi:10.1088/0957-4484/22/29/295202
[15] Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, “Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films,” ACS Nano, Vol. 4, No. 4, 2010, pp. 1963-1970. doi:10.1021/nn1000035
[16] H. Gomez, M. K. Ram, F. Alvi, P. Villalba, E. (Lee) Stefanakos and A. Kumar, “Graphene-Conducting Polymer Nanocomposite as Novel Electrode for Supercapacitors,” Journal of Power Sources, Vol. 196, No. 8, 2011, pp. 4102-4108. doi:10.1016/j.jpowsour.2010.11.002
[17] F. Alvi, M. K. Ram, P. A. Basnayaka, E. Stefanakos, Y. Goswami and A. Kumar, “Graphene polyethylene dioxythiophene Conducting Polymer Nanocomposite Based Supercapacitor,” Electrochimica Acta, Vol. 56, No. 25, 2011, pp. 9406-9412.
[18] F. Alvi, P. A. Basnayaka, M. K. Ram, H. Gomez, E. Stefanako, Y. Goswami and A. Kumar, “Graphene-Polythiophene Nanocomposite as Novel Supercapacitor Electrode Material,” Journal of New Materials for Electrochemical Systems, Vol. 15, No. 2, 2012, pp. 89-95.
[19] F. Alvi, M. K. Ram, P. Basnayaka, E. Stefanakos, A. Hoff and A. Kumar, “Novel Graphene-Conducting Polythiophenes Materials for Applications in the Electrochemical Supercapacitors,” ECS Meeting, Vol. 1, No. 11, 2011, p. 596.
[20] D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang and Y. Ma, “Enhanced Capacitance and Rate Capability of Grphene/ Polypyrrole Composite as Electrode Material for Supercapacitors,” Journal of Power Sources, Vol. 196, No. 14, 2011, pp. 5990-5996. doi:10.1016/j.jpowsour.2011.02.090
[21] S. Biswas and L.T. Drzal, “Multilayered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes,” Chemistry of Materials, Vol. 22, No. 20, 2010, pp. 5667-5671. doi:10.1021/cm101132g
[22] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes,” Applied Physics Letters, Vol. 70, No. 11, 1997, pp. 1480-1482. doi:10.1063/1.118568
[23] P. L. Taberna, P. Simon and J. F. Fauvarque, “Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors,” Journal of the Electrochemical Society, Vol. 150, No. 3, 2003, pp. A292-A300. doi:10.1149/1.1543948
[24] J. Gamby, P. Taberna, P. Simon and J. F. Fauvarque, “Studies and Characterization of Various Activated Carbons Used for Carbon/Carbon Supercapacitors,” Journal of Power Sources, Vol. 101, No. 1, 2001, pp. 109-116.
[25] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon- Based Supercapacitors Produced by Activation of Graphene,” Science, Vol. 332, No. 6037, 2011, pp. 1537- 1541. doi:10.1126/science.1200770
[26] V. V. Karambelkar and J. D. Ekhe, “High Yield Polypyrrole: A Novel Approach to Synthesis and Characterization,” Journal of Material Science, Vol. 46, No. 16, 2011, pp. 5324-5331. doi:10.1007/s10853-011-5470-3
[27] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, Vol. 97, No. 18, 2006, Article ID: 187401. doi:10.1103/PhysRevLett.97.187401
[28] V. Daniel, “Dielectric Relaxation,” Academic Press, London and New York, 1967.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.