A Novel Approach for Inferring the Proportion of Terrestrial Organic Matter Input to Marine Sediments on the Basis of TOC:TN and δ13Corg Signatures

Abstract

The ratio of total organic carbon to total nitrogen (TOC:TN) and the stable carbon isotope ratio of organic matter (δ13Corg) are widely applied for inferring the origin of organic matter (OM) in Quaternary marine sediments. A plot of TOC:TN vs. δ13Corg is useful for such studies but is strongly based on qualitative constraints. This study is based on the qualitative characterization of the source of Quaternary OM via analysis of TOC:TN and δ13Corg signatures, but also proposes a probability parameter, which combines both signatures, to infer the amount of Terrestrial OM Input (TOMI). This index provides a method for quantifying the proportion of terrestrial OM vs. marine OMin a more comprehensive manner. The TOMI index concept was applied to a study area in theJoetsuBasin, eastern margin of theJapanSea, where previous studies have characterized theOMfrom the Last Glacial Maximum (LGM) to the present. The upwards increase in TOC indicates thatOMproduction during the Holocene was higher than during the LGM. The enriched δ13Corg signature upwards and decrease in TOC:TN suggest predominantly marine phytoplankton OM during the Holocene. Throughout the LGM, low OM production with depleted δ13Corg values and high TOC:TN values in the sediments suggest a predominantly C3 terrestrial plant source for the OM. Using these data, it was possible to calculate a proxy for a sea level variation curve during that period and to investigate the influence of the proximity of the coastal line to the continental slope on the input of terrestrial material to the basin. The proposal provides information for the application of sequence stratigraphic concepts. The TOMI index could confirm that the proximity to the shoreline and shelf break has a strong influence on the input of terrestrial material during lowstand periods.

Share and Cite:

A. Freire and M. Monteiro, "A Novel Approach for Inferring the Proportion of Terrestrial Organic Matter Input to Marine Sediments on the Basis of TOC:TN and δ13Corg Signatures," Open Journal of Marine Science, Vol. 3 No. 2, 2013, pp. 74-92. doi: 10.4236/ojms.2013.32009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] O. K. Bordovsky, “Sources of Organic Matter in Marine Basins,” Marine Geology, Vol. 3, No. 1-2, 1965, pp. 5-31. doi:10.1016/0025-3227(65)90003-4
[2] D. Burdige, “Geochemistry of Marine Sediments,” Princeton University Press, New Jersey, 2006.
[3] P. A. Meyers, “Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter,” Chemical Geology, Vol. 114, No. 3-4, 1994, pp. 289-302. doi:10.1016/0009-2541(94)90059-0
[4] P. A. Meyers, “Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic and Paleoclimatic Processes,” Organic Geochemistry, Vol. 27, No. 5-6, 1997, pp. 213250. doi:10.1016/S0146-6380(97)00049-1
[5] K. H. Freeman, “Isotopic Biogeochemistry of Marine Organic Carbon,” Reviews in Mineralogy and Geochemistry, Vol. 43, No. 1, 2001, pp. 579-605. doi:10.2138/gsrmg.43.1.579
[6] A. L. Lamb, G. P. Wilson and M. J. Leng, “A Review of Coastal Paleoclimate and Relative Sea-Level Reconstructions Using δ13C and C/N Ratios in Organic Material,” Earth-Science Reviews, Vol. 75, No. 1-4, 2006, pp. 29-57. doi:10.1016/j.earscirev.2005.10.003
[7] J. Hoefs, “Stable Isotope Geochemistry,” Springer-Verlag, Berlin, 2004. doi:10.1007/978-3-662-05406-2
[8] C. R. Brodie, M. J. Leng, J. S. L. Casford, C. P. Kendrick, J. M. Lloyd, Z. Yongqiang and M. I. Bird, “Evidence for Bias in C and N Concentrations and δ13C Composition of Terrestrial and Aquatic Organic Materials Due to PreAnalysis Acid Preparation Methods,” Chemical Geology, Vol. 282, No. 3-4, 2011, pp. 67-83. doi:10.1016/j.chemgeo.2011.01.007
[9] T. S. Bianchi, S. Mitra and B. McKee, “Sources of Terrestrially Derived Carbon in the Lower Mississippi River and Louisiana Shelf: Importance for Differential Sedimentation and Transport at the Coastal Margin,” Marine Chemistry, Vol. 77, No. 2-3, 2002, pp. 211-223. doi:10.1016/S0304-4203(01)00088-3
[10] T. S. Bianchi, L. A. Wysocki, K. M. Schneider, T. R. Filley, D. R. Corbet and K. Kolker, “Sources of Terrestrial Organic Carbon in the Louisiana Shelf (USA): Evidence for the Importance of Coastal Marsh Inputs,” Aquatic Geochemistry, Vol. 17, No. 4-5, 2011, pp. 431-456. doi:10.1007/s10498-010-9110-3
[11] M. A. Goni, K. C. Ruttemberg and T. I. Eglinton, “A Reassessment of the Sources and Importance of LandDerived Organic Matter in Surface Sediments from Gulf of Mexico,” Geochimica et Cosmochimica Acta, Vol. 62, No. 18, 1998, pp. 3055-3075. doi:10.1016/S0016-7037(98)00217-8
[12] M. A. Goni and J. I. Hedges, “Sources and Reactivities of Marine-Derived Organic Matter in Coastal Sediments as Determined by Alkaline CuO Oxidation,” Geochimica et Cosmochimica Acta, Vol. 59, No. 14, 1995, pp. 2965-2981. doi:10.1016/0016-7037(95)00188-3
[13] F. G. Prahl, J. T. Bennett and R. Carpenter, “The Early Diagenesis of Aliphatic Hydrocarbons and Organic Matter in Sedimentary Particulates from Dabob Bay, Washington,” Geochimica et Cosmochimica Acta, Vol. 44, No. 12, 1980, pp. 1967-1976. doi:10.1016/0016-7037(80)90196-9
[14] A. N. Loh, J. E. Bauer, “Distribution, Partitioning and Fluxes of Dissolved and Particulate Organic C, N and P in the Eastern North Pacific and Southern Oceans,” DeepSea Research I, Vol. 47, No. 12, 2000, pp. 2287-2316. doi:10.1016/S0967-0637(00)00027-3
[15] M. Denny, “How the Ocean Works: An Introduction to Oceanography,” Princeton University Press, Princeton, 2008.
[16] A. F. M. Freire, T. R. Menezes, R. Matsumoto, T. Sugai and D. J. Miller, “Origin of Organic Matter in the LateQuaternary Sediments of the Eastern Margin of Japan Sea,” Journal of the Sedimentological Society of Japan, Vol. 68, No. 2, 2009, pp. 117-128. doi:10.4096/jssj.68.117
[17] A. F. M. Freire, “An Integrated Study on the Gas Hydrate Area of Joetsu Basin, Eastern Margin of Japan Sea, Using Geophysical, Geological and Geochemical Data,” Ph.D. Thesis, University of Tokyo, Tokyo, 2010, p. 247.
[18] K. Tamaki and N. Isezaki, “Tectonic Synthesis of the Japan Sea Based on the Collaboration of the Japan-URSS Monograph Project,” In: N. Isezaki, et al., Eds., Geology and geophysics of the Japan Sea (Japan-Russia Monograph Series, Vol. 1),” Terra Scientific Publishing Company, Tokyo, 1996, pp. 483-487.
[19] L. Jolivet, K. Tamaki and M. Fournier, “Japan Sea, Opening History and Mechanism: A Synthesis,” Journal of Geophysical Research, Vol. 99, No. B11, 1986, pp. 2223722259.
[20] A. Okui, M. Kaneko, S. Nakanishi, N. Monzawa and H. Yamamoto, “An Integrated Approach to Understanding the Petroleum System of a Frontier Deep-Water Area, Offshore Japan,” Petroleum Geoscience, Vol. 14, No. 3, 2008, pp. 1-12. doi:10.1144/1354-079308-765
[21] A. F. M. Freire, R. Matsumoto and L. A. Santos, “Structural-Stratigraphic Control on the Umitaka Spur Gas Hydrates of Joetsu Basin in the Eastern Margin of Japan Sea,” Marine and Petroleum Geology, Vol. 28, No. 10, 2011, pp. 1967-1978. doi:10.1016/j.marpetgeo.2010.10.004
[22] T. Oba, M. Kato, H. Kitazato, I. Koizumi, A. Omura, T. Sakai and T. Takayana, “Paleoenvironmental Changes in the Japan Sea during the Last 85,000 Years,” Paleoceanography, Vol. 6, No. 4, 1991, pp. 499-518. doi:10.1029/91PA00560
[23] I. Koisumi, R.Tada, H. Narita, T. Irino, T. Aramaki, T. Oba and H. Yamamoto, “Paleoceanographic History around the Tsugaru Strait between the Japan Sea and the Northwest Pacific Ocean Since 30 Cal Kyr BP,” Palaeogeography, Palaeoclimatology, Palaeocology, Vol. 232, No. 1, 2006, pp. 36-52. doi:10.1016/j.palaeo.2005.09.003
[24] R. Tada, T. Irino and I. Koizumi, “Land-Ocean Linkages over Orbital and Millennial Timescales Recorded in the Late Quaternary Sediments of the Japan Sea,” Paleoceanography, Vol. 14, No. 2, 1999, pp. 236-247. doi:10.1029/1998PA900016
[25] A. F. M. Freire, T. Sugai, R. Matsumoto, “The Use of Tephras for Stratigraphic Correlation: A Case Study on the Eastern Margin of Japan Sea,” Boletim de Geociências da Petrobras, Vol. 18, No. 1, 2010, pp. 97-121.
[26] A. Hiruta, G. T. Snyder, H. Tomaru and R. Matsumoto, “Geochemical Constraints for the Formation and Dissociation of Gas Hydrate in an Area of High Methane Flux, Eastern Margin of the Japan Sea,” Earth and Planetary Science Letters, Vol. 279, No. 3-4, 2009, pp. 326-339. doi:10.1016/j.epsl.2009.01.015
[27] R. Matsumoto, “Formation and Collapse of Gas Hydrate Deposits in High Methane Flux Area of the Joetsu Basin, Eastern Margin of Japan Sea,” Journal of Geography, Vol. 118, No. 2, 2009, pp. 43-71.
[28] H. Machida and F. Arai, “Atlas of Tephra in and around Japan,” University of Tokyo Press, Tokyo, 2003.
[29] M. Brenner, T. J. Whitmore, J. H. Curtis, D. A. Hodell and C. L. Schelske, “Stable Isotope (δ13C and 15N) Signatures of Sedimented Organic Matter as Indicators of Historic Lake Trophic State,” Journal of Paleolimnology, Vol. 22, No. 2, 1999, pp. 205-221. doi:10.1023/A:1008078222806
[30] P. Chouldhary, J. Routh and G. J. Chakrapani, “Organic Geochemical Record of Increased Productivity in Lake Naukuchiyatal, Kumaun Himalayas, India,” Environmental Earth Science, Vol. 60, No. 4, 2010, pp. 837-843. doi:10.1007/s12665-009-0221-3
[31] V. Galman, J. Rydberg, S. S. de-Luna, R. Bindler and I. Renberg, “Carbon and Nitrogen Loss Rates during Aging of Lake Sediments: Changes over 27 Years Studied in Varved Lake Sediments,” Limnology Oceanography, Vol. 53, No. 3, 2008, pp. 1076-1082. doi:10.4319/lo.2008.53.3.1076
[32] J. P. Kennett, K. G. Cannariato, I. L. Hendy and I. L. Behl, “Methane Hydrates in Quaternary Climate Changes: The Clathrate Gum Hypothesis,” American Geophysical Union, Washington DC, 2003. doi:10.1029/054SP
[33] E. S. Gordon, M. A. Goni, “Sources and Distribution of Terrigenous Organic Matter Delivered by the Atchafalaya River to Sediments in the Northern Gulf of Mexico,” Geochimica et Cosmochimica Acta, Vol. 67, No. 13, 2003, pp. 2359-2375. doi:10.1016/S0016-7037(02)01412-6
[34] H. W. Posamantier, G. P. Allen, D. P. James and M. Tesson, “Forced Regressions in a Sequence Stratigraphic Framework: Concepts, Examples, and Exploration Significance,” American Association of Petroleum Geologists Bulletin, Vol. 87, 1992, pp. 1687-1709.
[35] M. Nakada, N. Yonekura and K. Lambeck, “Late Pleistocene and Holocene Sea-Level Changes in Japan: Implications for Tectonic Histories and Mantle Rheology,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 85, No. 1-2, 1991, pp. 107-122. doi:10.1016/0031-0182(91)90028-P
[36] A. F. M. Freire and M. C. Monteiro, “Geochemical Analysis as a Complementary Tool to Estimate the Uplift of Sediments Caused by Shallow Gas Hydrates in Mounds at the Seafloor of Joetsu Basin, Eastern Margin of the Japan Sea,” Journal of Geological Research, Vol. 2012, Article ID: 839840, 2012, pp. 1-14. doi:10.1155/2012/839840

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.