Microstructural Development of Fe-20mass%Cr Alloys and Pure Copper Processed by Equal-Channel Angular Pressing

Abstract

Microstructural development of ultra low C, N, Fe-Cr alloy and pure copper processed by equal-channel angular pressing (ECAP) have been examined focusing on the initial stage of the formation of ultrafine grain structure. Fe-Cr alloys were pressed at 423 K while pure copper at room temperature for 1 to 3 passes via the route Bc to compare at the equivalent homologous temperature. Microstructural evolutions were characterized by electron backscatter diffraction (EBSD) image and transmission electron microscopy (TEM). It was found that deformation structures were mostly deformation-induced subboundaries in both the materials after one pass, but the fraction of high-angle grain boundary became higher in the Fe-Cr alloys than in pure copper in subsequent passes by increasing misorientation of the boundaries. The more enhanced formation of high angle boundaries in Fe-Cr alloys was discussed in terms of the nature of crystal slip of FCC and BCC structures.

Share and Cite:

M. Rifai, R. Haga, H. Miyamoto and H. Fujiwara, "Microstructural Development of Fe-20mass%Cr Alloys and Pure Copper Processed by Equal-Channel Angular Pressing," Materials Sciences and Applications, Vol. 4 No. 4, 2013, pp. 250-257. doi: 10.4236/msa.2013.44031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Progress in Materials Science, Vol. 45, No. 2, 2000, pp. 103-189. doi:10.1016/S0079-6425(99)00007-9
[2] R. Z. Valiev and T. G. Langdon, “Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement,” Progress in Materials Science, Vol. 51, No. 7, 2006, pp. 881-981. doi:10.1016/j.pmatsci.2006.02.003
[3] K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, “Influence of Channel Angle on the Development of Ultrafine Grains in Equal-Channel Angular Pressing,” Acta materialia, Vol. 46, No. 5, 1998, pp. 1589-1599. doi:10.1016/S1359-6454(97)00355-8
[4] N. Hansen and D. J. Jensen, “Development of Microstructure in FCC Metals during Cold Work,” Philosophical Transactions of the Royal Society of London Series A, Vol. 357, No. 1756, 1999, pp. 1447-1469.
[5] Y. Fukuda, K. Oh-ishi, Z. Horita and T. G. Langdon, “Processing of a Low-Carbon Steel by Equal-Channel Angular Pressing,” Acta Materialia, Vol. 50, No. 6, 2002, pp. 1359-1368. doi:10.1016/S1359-6454(01)00441-4
[6] C. X. Huang, H. J. Yang, S. D Wu and Z. F. Zhang, “Microstructural Characterizations of Cu Processed by ECAP from 4 to 24 Passes,” Material Science Forum, Vol. 584-586, 2008, pp. 333-337. doi:10.4028/www.scientific.net/MSF.584-586.333
[7] D. H. Shin and K.-T. Park, “Ultrafine Grained Steels Processed by Equal Channel Angular Pressing,” Materials Science and Engineering: A, Vol. 410-411, 2005, pp. 299-302. doi:10.1016/j.msea.2005.08.025
[8] D. H. Shin, I. Kim, J. Kim and K. T. Park, “Grain Refinement Mechanism during Equal-Channel Angular Pressing of a Low-Carbon Steel,” Acta Materialia, Vol. 49, No. 13, 2001, pp. 1285-1292. doi:10.1016/S1359-6454(01)00165-3
[9] D. H. Shin, B. C. Kim, W. Y. Choo and K.-T. Park, “Microstructural changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing,” Acta Materialia, Vol. 48, No. 12, 2000, pp. 3245-3252. doi:10.1016/S1359-6454(00)00090-2
[10] C. X. Huang, Y. L. Gao, G. Yang, S. D. Wu, G. Y. Li and S. X. Li, “Bulk Nanocrystalline Stainless Steel Fabircated by Equal Channel Angular Pressing,” Journal of Materials Research, Vol. 21, No. 7, 2006, pp. 1687-1692. doi:10.1557/jmr.2006.0214
[11] J. Kim, I. Kim and D. H. Shin, “Development of Deformation Structures in Low Carbon Steel by Equal Channel Angular Pressing,” Scripta Materialia, Vol. 45, No. 4, 2001, pp. 421-426. doi:10.1016/S1359-6462(01)01029-6
[12] J. C. Pang, M. X. Yang, G. Yang, S. D. Wu, S. X. Li and Z. F. Zhang, “Tensile and Fatigue Properties of Ultrafine-Grained Low-Carbon Steel Processed by Equal Channel Angular Pressing,” Materials Science and Engineering: A, Vol. 553, 2012, pp. 157-163. doi:10.1016/j.msea.2012.06.005
[13] D. H. Shin, W.-J. Kim and W. Y. Choo, “Grain Refinement of a Commercial 0.15%C Steel by Equal-Channel Angular Pressing,” Scripta Materialia, Vol. 41, No. 3, 1999, pp. 259-262. doi:10.1016/S1359-6462(99)00156-6
[14] D. H. Shin, C. W. Seo, J. Kim, K. T. Park and W. Y. Choo, “Microstructures and Mechanical Properties of Equal-Channel Angular Pressed Low Carbon Steel,” Scripta Materialia, Vol. 42, No. 7, 2000, pp. 695-699. doi:10.1016/S1359-6462(99)00422-4
[15] Y. I. Son, Y. K. Lee, K.-T. Park, C. S. Lee and D. H. Shin, “Ultrafine Grained Ferrite-Martensite Dual Phase Steels Fabricated via Equal Channel Angular Pressing: Microstructure and Tensile Properties,” Acta Materialia, Vol. 53, No. 11, 2005, pp. 3125-3134. doi:10.1016/j.actamat.2005.02.015
[16] G. Yang, C. X. Huang, C. Wang, L. Y. Zhang, C. Hu, Z. F. Zhang and S. D. Wu, “Enhancement of Mechanical Properties of Heat-Resistant Martensitic Steel Processed by Equal Channel Angular Pressing,” Materials Science and Engineering: A, Vol. 515, No. 1-2, 2009, pp. 199-206. doi:10.1016/j.msea.2009.03.031
[17] M. A. Gibbs, K. T. Hartwig, L. R. Cornwell, R. E. Goforth and E. A. Payzant, “Texture Formation in Bulk Iron Processed by Simple Shear,” Scripta Materialia, Vol. 39, No. 12, 1998, pp. 1699-1704. doi:10.1016/S1359-6462(98)00384-4
[18] M. Sus-Ryszkowska, T. Wejrzanowski, Z. Pakiela and K. J. Kurzydlowski, “Microstructure of ECAP Severely Deformed Iron and Its Mechanical Properties,” Materials Science and Engineering: A, Vol. 369, No. 1-2, 2004, pp. 151-156. doi:10.1016/j.msea.2003.10.318
[19] B. Han, F. Mohamed and E. Lavernia, “Mechanical properties of iron processed by severe plastic deformation”, Metallurgical and Materials Transactions A, Vol. 34, No. 1, 2003, pp. 71-83.
[20] B. Q. Han, E. Lavernia and F. A. Mahamed, “Dislocation Structure and Deformation in Iron Processed by Equal-Channel-Angular Pressing,” Metallurgical and Materials Transactions A, Vol. 35, No. 4, 2004, pp. 1343-1350.
[21] A. A. Gazder, W. Cao, C. H. J. Davies and E. V. Pereloma, “An EBSD Investigation of Interstitial-Free Steel Subjected to Equal Channel Angular Extrusion,” Materials Science and Engineering: A, Vol. 497, No. 1-2, 2008, pp. 341-352. doi:10.1016/j.msea.2008.07.030
[22] A. A. Gazder, F. D. Torre, C. F. Gu, C. H. J. Davies and E. V. Pereloma, “Microstructure and Texture Evolution of BCC and FCC Metals Subjected to Equal Channel Angular Extrusion,” Materials Science and Engineering: A, Vol. 415, No. 1-2, 2006, pp. 126-139. doi:10.1016/j.msea.2005.09.065
[23] S. S. Hazra, E. V. Pereloma and A. A. Gazder, “Microstructure and Mechanical Properties after Annealing of Equal-Channel Angular Pressed Interstitial-Free Steel,” Acta Materialia, Vol. 59, No. 10, 2011, pp. 4015-4029. doi:10.1016/j.actamat.2011.03.026
[24] S. Li, A. A. Gazder, I. J. Beyerlein, C. H. J. Davies and E. V. Pereloma, “Microstructure and Texture Evolution during Equal Channel Angular Extrusion of Interstitial-Free Steel: Effects of Die Angle and Processing Route,” Acta Materialia, Vol. 55, No. 3, 2007, pp. 1017-1032. doi:10.1016/j.actamat.2006.09.022
[25] S. N. Mathaudhu and K. Ted Hartwig, “Grain Refinement and Recrystallization of Heavily Worked Tantalum,” Materials Science and Engineering: A, Vol. 426, No. 1-2, 2006, pp. 128-142. doi:10.1016/j.msea.2006.03.089
[26] K. Máthis, T. Krajňák, R. Kuzel and J. Gubicza, “Structure and Mechanical Behaviour of Interstitial-Free Steel Processed by Equal-Channel Angular Pressing,” Journal of Alloys and Compounds, Vol. 509, No. 8, 2011, pp. 3522-3525. doi:10.1016/j.jallcom.2010.12.142
[27] O. Saray, G. Purcek and I. Karaman, “Principles of Equal-Channel Angular Sheet Extrusion (ECASE): Application to IF-Steel Sheets,” Review on Advanced Materials Science, Vol. 25, 2010, pp. 42-51.
[28] O. Saray, G. Purcek, I. Karaman, T. Neindorf and H. J. Maier, “Equal-Channel Angular Sheet Extrusion of Interstitial-Free (IF) Steel: Microstructural Evolution and Mechanical Properties,” Materials Science and Engineering: A, Vol. 528, No. 21, 2011, pp. 6573-6583. doi:10.1016/j.msea.2011.05.014
[29] Q. Wei, T. Jiao, S. N. Mathaudhu, E. Ma, K. T. Hartwig and K. T. Ramesh, “Microstructure and Mechanical Properties of Tantalum after Equal Channel Angular Extrusion (ECAE),” Materials Science and Engineering: A, Vol. 358, No. 1-2, 2003, pp. 266-272. doi:10.1016/S0921-5093(03)00305-8
[30] Q. Wei, L. Kecskes, T. Jiao, K. T. Hartwig, K. T. Ramesh and E. Ma, “Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation,” Acta Materialia, Vol. 52, No. 7, 2004, pp. 1859-1869. doi:10.1016/j.actamat.2003.12.025
[31] G. Yang, M.-X. Yang, Z.-D. Liu and C. Wang, “Three-Dimensional Microstructures and Tensile Properties of Pure Iron during Equal Channel Angular Pressing,” Journal of Iron and Steel Research, International, Vol. 18, No. 12, 2011, pp. 40-44. doi:10.1016/S1006-706X(12)60007-7
[32] H. R. Z. Sandim, H. H. Bernardi, B. Verlinden and D. Raabe, “Equal Channel Angular Extrusion of Niobium Single Crystals,” Materials Science and Engineering: A, Vol. 467, No. 1-2, 2007, pp. 44-52. doi:10.1016/j.msea.2007.02.086
[33] B. L. Li, N. Tsuji and N. Kamikawa, “Microstructure Homogeneity in Various Metallic Materials Heavily Deformed by Accumulative Roll-Bonding,” Materials Science and Engineering: A, Vol. 423, No. 1-2, 2006, pp. 331-342. doi:10.1016/j.msea.2006.02.028
[34] N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, “Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing,” Scripta Materialia, Vol. 47, No. 12, 2002, pp. 893-899. doi:10.1016/S1359-6462(02)00282-8
[35] F. Wetscher and R. Pippan, “Cyclic High-Pressure Torsion of Nickel and Armco Iron,” Philosophical Magazine, Vol. 86, No. 36, 2006, pp. 5867-5883. doi:10.1080/14786430600838288
[36] F. Wetscher, A. Vorhauer and R. Pippan, “Strain Hardening during High Pressure Torsion Deformation,” Materials Science and Engineering: A, Vol. 410-411, 2005, pp. 213-216. doi:10.1016/j.msea.2005.08.027
[37] X. Huang, N. Kamikawa and N. Hansen, “Increasing the Ductility of Nanostructured Al and Fe by Deformation,” Materials Science and Engineering: A, Vol. 493, No. 1-2, 2008, pp. 184-189. doi:10.1016/j.msea.2007.04.131
[38] X. Huang, N. Kamikawa, N. Tsuji and N. Hansen, “Nanostructured Aluminum and IF Steel Produced by rolling—A Comparative Study,” ISIJ International, Vol. 48, No. 8, 2008, pp. 1080-1087. doi:10.2355/isijinternational.48.1080
[39] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon, “Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials,” Scripta Materialia, Vol. 35, No. 2, 1996, pp. 143-146. doi:10.1016/1359-6462(96)00107-8
[40] R. K. Ham, “The Determination of Dislocation Densities in Thin Films,” Philosophical Magazine, Vol. 6, No. 69, 1961, pp. 1183-1184. doi:10.1080/14786436108239679
[41] A. S. Argon and S. R. Maloof, “Plastic Deformation of Tungsten Single Crystals at Low Temperatures,” Acta Metallurgica, Vol. 14, No. 11, 1966, pp. 1449-1461. doi:10.1016/0001-6160(66)90165-9
[42] H. Mughrabi, K. Herz and X. Stark, “The Effect of Strain-Rate on the Cyclic Deformation Properties of α-iron Single Crystal,” Acta Metallurgica, Vol. 24, No. 7, 1976, pp. 659-668. doi:10.1016/0001-6160(76)90086-9
[43] J. A. Wert, X. Huang, C. Winther, W. Pantleon and H. F. Poulsen, “Revealing Deformation Microstructures,” Materials Today, Vol. 10, No. 9, 2007, pp. 24-32. doi:10.1016/S1369-7021(07)70206-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.