Share This Article:

KamLAND-Experiment and Soliton-Like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment

Abstract Full-Text HTML Download Download as PDF (Size:4479KB) PP. 528-550
DOI: 10.4236/jmp.2013.44075    2,832 Downloads   4,253 Views   Citations

ABSTRACT

We give an alternative description of the data produced in the KamLAND experiment, assuming the existence of a natural nuclear reactor on the boundary of the liquid and solid phases of the Earth core. Analyzing the uncertainty of antineutrino spectrum of georeactor origin, we show that the theoretical (which takes into account the soliton-like nuclear georeactor) total reactor antineutrino spectra describe with good accuracy the experimental KamLAND-data over the years of 2002-2007 and 2002-2009, respectively. At the same time, the parameters of mixing (m221=2.5×10-5 eV2, tan2θ12=0.437) calculated within the framework of georeactor hypothesis substantially differ from the parameters of mixing ((m221=7.49×10-5 eV2, tan2θ12=0.436) obtained in KamLAND-experiment for total exposure over the period of 2002-2009. By triangulation of KamLAND and Borexino data we have constructed the coordinate location of soliton-like nuclear georeactors on the boundary of the liquid and solid phases of the Earth core.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Rusov, D. Litvinov, E. Linnik, V. Vaschenko, T. Zelentsova, M. Beglaryan, V. Tarasov, S. Chernegenko, V. Smolyar, P. Molchinikolov, K. Merkotan and P. Kavatskyy, "KamLAND-Experiment and Soliton-Like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment," Journal of Modern Physics, Vol. 4 No. 4, 2013, pp. 528-550. doi: 10.4236/jmp.2013.44075.

References

[1] K. Eguchi, et al., “First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance,” Physical Review Letters, Vol. 90, No. 2, 2003, pp. 041801-041805. doi:10.1103/PhysRevLett.90.021802
[2] T. Araki, et al., “Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion,” Physical Review Letters, Vol. 94, No. 8, 2005, pp. 0818011-0818015. doi:10.1103/PhysRevLett.94.081801
[3] T. Araki, et al., “Experimental Investigation of Geologically Produced Antineutrinos with KamLAND,” Nature, Vol. 436, No. 7050, 2005, pp. 499-503. doi:10.1038/nature03980
[4] S. Abe, et al., “Precision Measurement of Neutrino Oscillation Parameters with KamLAND,” Physical Review Letters, Vol. 100, No. 22, 2008, pp. 2218031-2218035. doi:10.1103/PhysRevLett.100.221803
[5] A. Gando, et al., “Enhanced Constraints on θ13 from a Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND,” Physical Review D, Vol. 83, 2011, Article ID: 052002.
[6] P. K, Kuroda, “On the Nuclear Physical Stability of the Uranium Minerals,” Journal of Chemical Physics, Vol. 25, No. 4, 1956, pp. 781-782. doi:10.1063/1.1743058
[7] P. K. Kuroda, “On the Infinite Multiplication Constant and the Age of the Uranium Minerals,” Journal of Chemical Physics, Vol. 25, No. 6, 1956, pp. 1295-1296. doi:10.1063/1.1743220
[8] P. K. Kuroda, “Nuclear Fission in the Early History of the Earth,” Nature, Vol. 187, 1960, pp. 36-38. doi:10.1038/187036a0
[9] G. A. Cowan, “A Natural Fission Reactor,” Scientific American, Vol. 235, No. 1, 1976, pp. 36-47. doi:10.1038/scientificamerican0776-36
[10] A. P. Meshik, C. M. Honenberg and O. V. Pravdivtseva, “Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Oklebondo Area in Gabon,” Physical Review Letters, Vol. 93, No. 18, 2004, pp. 182302-182305. doi:10.1103/PhysRevLett.93.182302
[11] R. B. Driscoll, “Nuclear Disruption of a Planet with Convective Outer Core,” Bulletin of the American Physical Society, Ser II, Vol. 33, 1988, pp. 1031-1037.
[12] J. M. Herndon, “Nuclear Fission Reactors as Energy Sources for the Giant Outer Planets,” Naturewissensch, Vol. 79, No. 1, 1992, pp. 7-14. doi:10.1007/BF01132272
[13] J. M. Herndon, “Feasibility of a Nuclear Fission Reactor at the Center of the Earth as Energy Source for the Geomagnetic Field,” Journal of Geomagnetism and Geoelectricity, Vol. 45, No. 5, 1993, pp. 423-427. doi:10.5636/jgg.45.423
[14] D. F. Hollenbach and J. M. Herndon, “Deep-Earth Reactor: Nuclear Fission, Helium, and the Geomagnetic Field,” Proceedings of the National Academy of Sciences USA, Vol. 98, No. 20, 2001, pp. 11085-11090. doi:10.1073/pnas.201393998
[15] J. M. Herndon, “Nuclear Georeactor Origin of the Oceanic Basalt, 3He/4He, Evidence and Implications,” Proceedings of the National Academy of Sciences USA, Vol. 100, No. 6, 2003, pp. 3047-3050. doi:10.1073/pnas.0437778100
[16] V. F. Anisichkin, A. A. Bezborodov and I. R. Suslov, “Chain Fission Reactions of Nuclides in the Earth Core during Billions Years,” Atomic Energy, Vol. 98, No. 5, 2005, pp. 370-379.
[17] V. D. Rusov, et al., “Geoantineutrino Spectrum and Slow Nuclear burning on the Boundary of the Liquid and Solid Phases of the Earth Core,” Journal of Geophysical Research, Vol. 112, No. B9, 2007, Article ID: B09203. doi:10.1029/2005JB004212
[18] V. F. Anisichkin, A. A. Bezborodov and I. R. Suslov, “Georeactor in Earth,” Transport Theory and Statistical Physics, Vol. 37, No. 5-7, 2008, pp. 624-633. doi:10.1080/00411450802515817
[19] R. J. de Meijer and W. van Westrenen, “Assessing the Feasibility and Consequences of Nuclear Georeactors in Earth Core-Mantle Boundary Region,” South African Journal of Science, Vol. 104, No. 3-4, 2008, pp. 111-118.
[20] X. Z. Bao, “Distribution of U and Th and Their Nuclear Fission in the Outer Core of the Earth and Their Effects on the Geodynamics,” Geological Review, Vol. 45, No. 1, 1999, pp. 82-92.
[21] D. L. Anderson, “The Helium Paradoxes,” Proceedings of the National Academy of Sciences USA, Vol. 95, No. 9, 1998, pp. 4822-4827. doi:10.1073/pnas.95.9.4822
[22] D. L. Anderson, “The Statistics and Distribution of Helium in the Mantle,” International Geology Review, Vol. 42, No. 4, 2000, pp. 289-311. doi:10.1080/00206810009465084
[23] D. L. Anderson, “Helium: Fundamental Models,” 2003, pp. 6-7. http://www.mantleplumes.org/HeliumFundamentals.html
[24] H. M. Gonnermann and S. Mukhopadhyay, “Preserving Noble Gases in Convective Mantle,” Nature, Vol. 459, No. 7246, 2009, pp. 560-564. doi:10.1038/nature08018
[25] T. Lay, et al., “A Post-Perovskite Lens and D’’ Heat Flux beneath the Central Pacific,” Science, Vol. 314, No. 5803, 2006, pp. 1272-1276. doi:10.1126/science.1133280
[26] S. L. Butler, W. R. Peltier and S. O. Costin, “Numerical Models of the Earth Thermal History: Effects of Inner-Core Solidification and Core Potassium,” Physics of the Earth and Planetary Interiors, Vol. 152, No. 1-2, 2005, pp. 22-42. doi:10.1016/j.pepi.2005.05.005
[27] V. D. Rusov, et al., “Galactic Cosmic Rays-Clouds Effect and Bifurcation Model of the Earth Global Climate. Part 2. Comparison of the Theory with Experiment,” Journal of Atmospheric and Solar (Terrestrial Physics), Vol. 72, No. 5-6, 2010, pp. 389-397.
[28] L. P. Feoktistov, “From the Past towards the Future: from the Hopes of Bomb to the Safe Reactor,” Publication of RFNC-Anrisph, Snezhinsk, 1998, p. 326.
[29] S. M. Feinberg, “Discussion Content,” International Conference on the Peaceful Uses for Atomic Energy, Vol. 9, No. 2, 1958, p. 447.
[30] L. P. Feoktistov, “Neutron-Fissioning Wave,” Reports of Academy of Sciences of the USSR, Vol. 309, 1989, pp. 864-867.
[31] E. Teller, M. Ishikawa and L. Wood, “Completely Automated Nuclear Reactors for Long-Term Operation,” Proceedings of Frontiers in Physical Symposium Joint American Physical Society and American Association of Physics Teachers Texas Meeting, Lubbock, 1995. http://www-phys.llnl.gov/adv_еnergy_src/ICENES96.html
[32] V. D. Rusov, E. P. Linnik, V. A. Tarasov, T. N. Zelentsova, I. V. Sharph, V. N. Vaschenko, S. I. Kosenko, M. E. Beglaryan, S. A. Chernezhenko, P. A. Molchinikolov, S. I. Saulenko and O. A. Byegunova, “Traveling Wave Reactor and Condition of Existence of Nuclear Burning Soliton-Like Wave in Neutron-Multiplying Media,” Energies, Vol. 4, No. 9, 2011, pp. 1337-1361.
[33] D. N. Kracnoshchekov, P. V. Kaazik and V. M. Ovtchinnikov, “Seismological Evidence for Mosaic Structure of the Surface on the Earth Inner Core,” Nature, Vol. 435, No. 7041, 2005, pp. 483-487. doi:10.1038/nature03613
[34] X. S. Bao and R. A. Secco, “U Solubility in Earth’s Core,” 2006, in press.
[35] S. T. Dye, “Neutrino Mixing Discriminates Geo-Reactor Models,” Physics Letters B, Vol. 679, No. 1, 2009, pp. 15-18. doi:10.1016/j.physletb.2009.07.010
[36] G. Bellini, et al., “Observation of Geo-Neutrinos,” Physics Letters B, Vol. 687, No. 4-5, 2010, pp. 299-304. doi:10.1016/j.physletb.2010.03.051
[37] A. M. Hofmeister and R. E. Criss, “Earth Heat Flux Revised and Linked Ti Chemistry,” Tectonophysics, Vol. 395, No. 3-4, 2005, pp. 159-177. doi:10.1016/j.tecto.2004.09.006
[38] H. N. Pollack, S. J. Hunter and J. R. Johnson, “Heat Flow from Earth Interior: Analysis of the Global Data Net,” Reviews of Geophysics, Vol. 31, No. 3, 1993, pp. 267-280. doi:10.1029/93RG01249
[39] D. L. Anderson, “Energetics of the Earth and the Missing Heat Mystery,” Elsevier Ltd., Oxford, 2007. www.mantleplumes.org/Energetics.html
[40] A. P. Van den Berg and D. Yuen, “Delayed Cooling of the Earth Mantle Due to Variable Thermal Conductivity and Formation of a Low Conductivity Zone,” Earth and Planetary Science Letters, Vol. 199, No. 3-4, 2002, pp. 403-413. doi:10.1016/S0012-821X(02, pp. 00531-9
[41] A. P. Van den Berg, D. Yuen and V. Strinbach, “The Effects of Variable Thermal Conducnivity on Mantle Heat Transfer,” Geophysical Research Letters, Vol. 28, No. 5, 2002, pp. 875-878. doi:10.1029/2000GL011903
[42] V. G. Aleksankin, et al., “Beta- and Antineutrino Nuclear Radiations,” Energoatomizdat, Moscow, 1989, p. 312.
[43] V. D. Rusov, V. A. Tarasov and D. A. Litvinov, “Reactor Antineutrino Physics,” URSS, Moscow, 2008, 430 p.
[44] B. Aharmim, et al., “Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory,” Physical Review Letters, Vol. 101, No. 11, 2008, pp. 1113011-1113015. doi:10.1103/PhysRevLett.101.111301
[45] V. M. Hamza, R. R. Cardoso and C. F. Ponte Neto, “Spherical Harmonic Analysis of Earth’s Conductive Heat Flow,” International Journal of Earth Sciences, Vol. 97, No. 2, 2008, pp. 205-226. doi:10.1007/s00531-007-0254-3
[46] V. D. Rusov, et al., “The KamLAND-Experiment and Soliton-Like Nuclear Georeactor. Part 2. Fundemental Geophysical Consequences,” in preparation.
[47] G. Bellini, et al., “Observation of Geo-Neutrinos,” Physics Letters B, Vol. 687, No. 4-5, 2010, pp. 299-304. doi:10.1016/j.physletb.2010.03.051
[48] T. Schwetz, M. Tortola and J. W. F. Valle, “Three-Flavor Neutrino Oscillation Update,” New Journal of Physics, Vol. 10, No. 11, 2008, Article ID: 113011. doi:10.1088/1367-2630/10/11/113011
[49] H. F. J. Corr and V D. J. aughan, “A Recent Volcanic Eruption beneath the West Antarctic Ice Sheet,” Nature Geoscience, Vol. 1, 2008, pp. 122-125. doi:10.1038/ngeo106
[50] Source. http://pubs.usgs.gov/gip/dynamic/world_map.html
[51] G. L. Fogli, E. Lisi, A. Palazzo and A. M. Rotunno, “KamLAND Neutrino Spectra in Energy and Time: Indication for Reactor Poer Variations and Constraints of the Georeactor,” Physics Letters B, Vol. 623, No. 1-2, 2005, pp. 80-92. doi:10.1016/j.physletb.2005.07.064
[52] T. Schvetz, “Variations on KamLAND: Likelihood Analysis and Frequentist Confidence Regions,” Physics Letters B, Vol. 577, No. 3-4, 2003, pp. 120-128. doi:10.1016/j.physletb.2003.10.024
[53] V. M. Kolobashkin, P. M. Rubtsov, P. A. Ruzhanskiy, et al., “Calculated Characteristics of Irradiated Nuclear Fuel,” Energoatomizdat, Moscow, 1983.
[54] V. V. Anisovitch, M. N. Kobrinsky, Y. Niri and Y. Shabelsky, “Additive Quark Model of Hadrons,” Physics Uspehi, USSR, Vol. 144, 1984, p. 553.
[55] B. A. Buffet, “The Thermal State of Earth Core,” Science, Vol. 299, No. 5613, 2003, pp. 1675-1677. doi:10.1126/science.1081518
[56] M. Dikpati, G. de Toma and P. A. Gilman, “Polar Flux, Cross-Equatorial Flux, and Dynamo-Generated Tachocline Toroidal Flux as Predictors of Solar Cycles,” The Astrophysics Journal, Vol. 675, No. 1, 2008, p. 920. doi:10.1086/524656
[57] M. Dikpati, “Predicting Cycle 24 Using Various Dynamo-Based Tools,” Annales Geophysicae, Vol. 26, No. 2, 2008, pp. 259-267. doi:10.5194/angeo-26-259-2008
[58] “Data of the Observatory Eskdalemuir, (England),” World Data Centre for Geomagnetic (Edinburg), 2007. http://www.geomag.bgs.ak.uk./gifs/annual_means.shtml
[59] J.-L. Le Mouel, T. R. Madden, J. Ducruix and V. Courtillot, “Decade Fluctuations in Geomagnetic Westward Drift and Earth Rotation,” Nature, Vol. 290, 1981, pp. 763-765. doi:10.1038/290763a0
[60] V. D. Rusov, E. P. Linnik, K. Kudela, S. C. Mavrodiev, I. V. Sharh, T. N. Zelentsova, M. E. Beglaryan, V. P. Smolyar and K. K. Merkotan, “Axion Mechanism of the Sun Luminosity and Solar Dynamo-Geodynamo Connection,” in press.
[61] E. H. Vestin and A. B. Kahle, “The Westward Drift and Geomagnetic Secular Change,” Geophysical Journal of the Royal Astronomical Society, Vol. 15, No. 1-2, 1968, pp. 29-37. doi:10.1111/j.1365-246X.1968.tb05743.x
[62] R. Hide, D. H. Boggs and J. O. Dickey, “Angular Momentum Flucntuations within the Earth’s Liquid Core and Torsional Oscillations of the Core-Mantle System,” Geophysical Journal International, Vol. 143, No. 3, 2000, pp. 777-786. doi:10.1046/j.0956-540X.2000.01283.x
[63] V. D. Rusov, T. N. Zelentsova, V. A. Tarasov and D. А. Litvinov, “Inverse Problem of Remote Neutrino Diagnostic of Intrareactor Processes,” Journal of Applied Physics, Vol. 96, No. 3, 2004, pp. 1734-1739.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.