Montmorillonite K10 Clay Catalyzed One Pot Synthesis of 2,4,6-Tri Substituted Pyridine under Solvent Free Condition

Abstract

Montmorillonite K10 catalyzed synthesis of 2,4,6 triaryl pyridine under solvent free condition is described. Montmorillonite effectively catalyzed the reaction in good to excellent yields. Using this solid catalyst, the reactions could be carried out in a short period of time with very good yield of triaryl pyridines, up to 97% under solvent free condition. This catalyst could be recycled very easily, which makes this methodology environmentally benign. The catalyst is active over three cycles.

Share and Cite:

V. Kannan and K. Sreekumar, "Montmorillonite K10 Clay Catalyzed One Pot Synthesis of 2,4,6-Tri Substituted Pyridine under Solvent Free Condition," Modern Research in Catalysis, Vol. 2 No. 2, 2013, pp. 42-46. doi: 10.4236/mrc.2013.22007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. U. Lesanko and D. G. Hall, “Wanted: New Multicomponent Reactions for Generating Libraries of Polycyclic Natural Products,” Current Opinion in Chemical Biology, Vol. 9, No. 3, 2005, pp. 266-276. doi:10.1016/j.cbpa.2005.04.003
[2] N. Li, P. Wang, S. L. Lai, W. Liu, C. S. Lee, S. T. Lee and Z. Liu, “Synthesis of Multiaryl-Substituted Pyridine Derivatives and Applications in Non-Doped Deep-Blue OLEDs as Electron-Transporting Layer with High Hole-Blocking Ability,” Advanced Materials, Vol. 22, No. 4, 2010, pp. 527-530. doi:10.1002/adma.200902430
[3] L. C. W. Chang, J. K. Von Frijtag, D. Kunzel, T. M. Mulder-Kriegger, R. F. Spangersberg, S. F. Roerink, G. Hout, M. W. Beukers, J. Brussee and A. P. Ijzerman, “A Series of Ligands Displaying a Remarkable Agonistic-Antagonistic Profile at the Adenosine A1 Receptor,” Journal of Medicinal Chemistry, Vol. 48, No. 6, 2005, pp. 2045-2053. doi:10.1021/jm049597+
[4] M. W. Beukers, L. W. Chang, J. K. von Frijtag, D. Künzel, T. Mulder-Krieger, R. F. Spanjersberg, J. Brussee and A. P. I. Jzerman, “New, Non-Adenosine, High-Potency Agonists for the Human Adenosine A2B Receptor with an Improved Selectivity Profile Compared to the Reference Agonist N-Ethylcarboxamidoadenosine,” Journal of Medicinal Chemistry, Vol. 47, No. 15, 2004, pp. 3707-3709. doi:10.1021/jm049947s
[5] A. D. Pillai, P. D. Rathod, P. X. F. M. Patel, M. Nivsarkar, K. K. Vasu, H. Padh and V. Sudarsanam, “Novel Drug Designing Approach for Dual Inhibitors as Anti-Inflammatory Agents: Implication of Pyridine Template,” Biochemical and Biophys Research Communications, Vol. 301, No. 1, 2003, pp. 183-186. doi:10.1016/S0006-291X(02)02996-0
[6] G. W. Cave, M. J. Hardie, B. A. Roberts and C. L. Raston, “A Versatile Six-Component Molecular Capsule Based on Benign Synthons—Selective Confinement of a Heterogeneous Molecular Aggregate,” European Journal of Organic Chemistry, Vol. 2001, No. 17, 2001, pp. 3227-3231. doi:10.1002/1099-0690(200109)2001:17<3227::AID-EJOC3227>3.0.CO;2-V
[7] R. R. Jetti, A. Nagia, F. Xue and T. C. W. Mak, “Polar Host-Guest Assembly Mediated by Halogen…π Interaction: Inclusion Complexes of 2,4,6-Tris (4-halophenoxy)-1,3,5-triazine (Halo = Chloro, Bromo) with Trihalobenzene (Halo = Bromo, Iodo),” Chemical Communications, No. 10, 2001, pp. 919-920. doi:10.1039/b102150h
[8] Z. C. Watson, N. Bampos and J. M. Sanders, “Mixed Cyclic Trimers of Porphyrins and Dioxoporphyrins: Geometry vs. Electronics in Ligand Recognition,” New Journal of Chemistry, Vol. 22, No. 11, 1998, pp. 1135-1138. doi:10.1039/a805504a
[9] F. Chubb, A. S. Hay and R. B. Sandin, “The Leuckart Reaction of Some 1,5-Diketones,” Journal of American Chemical Society, Vol. 75, No. 23, 1953, pp. 6042-6044. doi:10.1021/ja01119a508
[10] R. S. Tewari and A. K. Dubey, “Studies on Cycloimmonium Ylides. Synthesis of Some 2,4,6-Triaryl-Substituted Pyridines via Isoquniolinium Ylides,” Journal of Chemical Engineering Data, Vol. 25, No. 1, 1980, pp. 91-92. doi:10.1021/je60084a032
[11] S. P. Kendurkar and R. S. Tewari, “Synthesis of Some New 2,4,6-Triaryl-Substituted Pyridines Via Aroylmethy-lenepyridinium Ylides,” Journal of Chemical Engineering Data, Vol. 19, No. 2, 1974, pp. 184-188. doi:10.1021/je60061a004
[12] F. Krohnke, W. Zecher, J. Curtze, D. Drechsler, K. Pfleghar, K. E. Schnalke and W. Weis, “Syntheses Using the Michael Adddition of Pyridinium Salts,” Angewandte Chemie International Edition in English, Vol. 1, No. 12, 1962, pp. 626-632. doi:10.1002/anie.196206261
[13] K. T. Potts, M. J. Cipullo, P. Ralli and G. Theodoridis, “Ketenedithioacetals as Synthetic Intermediates. A Versatile Synthesis of Pyridenes, Polypyridinyls, and Pyrylium Salts,” Journal of American Chemical Society, Vol. 103, No. 12, 1981, pp. 3584-3585. http://dx.doi.org/10.1021/ja00402a062
[14] T. Kobayashi, H. Kakiuchi and H. Kato, “On the Reaction of N-(Diphenylphosphinyl)-1-phenylethanimine with Aromatic Aldehydes Giving 4-Aryl-2,6-diphenylpyridine Derivatives,” Bulletin of the Chemical Society of Japan, Vol. 64, No. 2, 1991, pp. 392-395. doi:10.1246/bcsj.64.392
[15] F. Palacios, A. O. Retana and J. A. Oyarzabal, “A ‘One Pot’ Synthesis of Polysubstituted Pyridines from Metallated Alkylphosphonates, Nitriles and α,β-Unsaturated Ketones,” Tetrahedron Letters, Vol. 37, No. 26, 1996, pp. 4577-4580. doi:10.1016/0040-4039(96)00850-7
[16] G. W. V. Cave and C. L. Raston, “Towards Benign SynThesis of Pyridines Involving Sequential Solvent Free Aldol and Michael Addition Reactions,” Chemical Communications, No. 22, 2000, pp. 2199-2200. doi:10.1039/b007431o
[17] S. Tu, T. Li, F. Shi, F. Fang, S. Zhu, X. Wei and Z. Zong, “An Efficient Improve for the Krohnke Reaction: One-Pot Synthesis of 2,4,6-Triarylpyridines Using Raw Materials under Microwave Irradiation,” Chemistry Letters, Vol. 34, No. 5, 2005, pp. 732-733. doi:10.1246/cl.2005.732
[18] K. Motokura, S. Matsunaga, A. Miyaji, Y. Sakamoto and T. Baba, “Heterogeneous Allylsilation of Aromatic and Aliphatic Alkenes Catalyzed by Proton-Exchanged Montmorillonite,” Organic Letters, Vol. 12, No. 7, 2010, pp. 1508-1511. doi:10.1021/ol100228t
[19] K. Motokura, M. Tada and Y. Iwasawa, “Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences,” Journal of American Chemical Society, Vol. 131, No. 23, 2009, pp. 7944-7945. doi:10.1021/ja9012003
[20] M. Nose, T. Mizugaki, K. Jitsukawa and K. Kaneda, “Reusable Montmorillonite-Entrapped Organocatalyst for Asymmetric Diels-Alder Reaction,” Tetrahedron Letters, Vol. 49, No. 38, 2008, pp. 5464-5466. doi:10.1016/j.tetlet.2008.07.011
[21] S. B. Neji, M. Trabelsi and M. H. Frikha, “Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor,” Energies, Vol. 2, No. 4, 2009, pp. 1107-1117. doi:10.3390/en20401107
[22] M. R. Dintzner, Y. A. Mondjnou and D. J. Pileggi, “Montmorillonite Clay-Catalyzed Cyclotrimerization and Oxidation of Aliphatic Aldehydes,” Tetrahedron Letters, Vol. 51, No. 5, 2010, pp. 826-827. doi:10.1016/j.tetlet.2009.12.009
[23] T. Kobayashi, H. Kakiuchi and H. Kato, “On the Reaction of N-(Diphenylphosphinyl)-1-phenylethanimine with Aromatic Aldehydes Giving 4-Aryl-2,6-diphenylpyridine Derivatives,” Bulletin of the Chemical Society of Japan, Vol. 64, No. 2, 1991, pp. 392-395. doi:10.1246/bcsj.64.392
[24] P. G. Ingole, S. V. Jadhav and H. C. Bajaj, “Ionic Liquid Mediated One Pot Synthesis of Substituted 2,4,6-Triarylpyridines,” International Journal of Chemical Technological Research, Vol. 2, No. 1, 2010, pp. 289-294.
[25] M. Adib, H. Tahermansouri, S. A. Koloogani, B. Mohammadi and H. R. Bijanzadeh, “Krohnke Pyridines: An Efficient Solvent Free Synthesis of 2,4,6-triarylpyridines,” Tetrahedron Letters, Vol. 47, No. 33, 2006, pp. 5957- 5960. doi:10.1016/j.tetlet.2006.01.162
[26] X. Q. Huang, H. X. Li, J. X. Wang and X. F. Jia, “A Rapid and Efficient Synthesis of 2,4,6-Triarylpyridines under Microwave Irradiation,” Chinese Chemical Letters, Vol. 16, No. 5, 2005, pp. 607-608.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.