Share This Article:

Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens)

Abstract Full-Text HTML XML Download Download as PDF (Size:5152KB) PP. 570-583
DOI: 10.4236/abb.2013.44075    4,253 Downloads   7,255 Views   Citations

ABSTRACT

Heavy metal pollution has become a serious environmental issue in the last few decades. There is a need to develop potential technology that can remove toxic heavy metals ions found in polluted environments. This study was undertaken to determine the resistance levels of different concentrations of heavy metals using filamentous fungi of Trichoderma aureoviride, T. harzianum, and T. virens. Based on the results, the T. virens strain T128 gave the highest tolerance ability for Ni3+ and Pb2+ in a 1200 mg/L concentration. The accumulation and uptake capacity was determined by the maximum removal of Pb2+, Cu2+, and Ni3+ by a T. harzianum in liquid medium when compared to other fungi. The metal removal occurred at a concentration of 500 mg/L and was 13.48 g/g for Pb2+, 3.1254 g/g for Cu2+ and 0.8351 g/g for Ni3+. For Zn2+, the highest tolerance and uptake capacity of metal was recorded at 3.1789 g/g by T. virens.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Siddiquee, S. , Aishah, S. , Azad, S. , Shafawati, S. and Naher, L. (2013) Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Advances in Bioscience and Biotechnology, 4, 570-583. doi: 10.4236/abb.2013.44075.

References

[1] Poli, A., Salerno, A., Laezza, G., et al. (2009) Heavy metal resistance of some thermophiles: Potential use of αamylase from Anoxybacillus amylolyticusas a microbial enzymatic bioassay. Resource Microbiology, 160, 99106. doi:10.1016/j.resmic.2008.10.012
[2] Nur Liyana, I., Nur Ain Izzati, M.Z. and Tan, S.G. (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Science, 23, 824-830. doi:10.1016/S1001-0742(10)60475-5
[3] Zafar, S., Aqil, F. and Ahmad, I. (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98, 2557-2561. doi:10.1016/j.biortech.2006.09.051
[4] Lovely, D.R. and Philips, E.J.P. (1994) Reduction of chromate by Desulfovibrio vulgaris and its C3 cytochrome. Journal of Environmental Microbiology, 60, 726-728.
[5] Kapoor, A. and Viraraghavan, T. (1998) Biosorption of heavy metals on Aspergillus niger: Effect of pretreatment. Bioresource Technology, 63, 109-113. doi:10.1016/S0960-8524(97)00118-1
[6] Anand, P., Isar, J., Saran, S. and Saxena, R.K. (2006) Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97, 1018-1025. doi:10.1016/j.biortech.2005.04.046
[7] Yazdani, M., Chee, K.Y., Faridah, A. and Tan, S.G. (2010) An in vitro study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride. Environmental Asia, 3, 53-59.
[8] Qazilbash, A.A. (2004) Isolation and characterization of heavy metal tolerant biota from industrially polluted soils and their role in bioremediation. Biological Science, 41, 210-256.
[9] Kapoor, A., Viraraghavan, T. and Cullimore, D.R. (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 70, 95-104. doi:10.1016/S0960-8524(98)00192-8
[10] Lopez, E.E. and Vazquez, C. (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 50, 137-143. doi:10.1016/S0045-6535(02)00485-X
[11] Kacprzak, M. and Malina, G. (2005) The tolerance and Zn2+, Ba2+ and Fe2+ accumulation by Trichoderma atroviride and Mortierella exigua isolated from contaminated soil. Canadian Journal Soil Science, 85, 283-290. doi:10.4141/S04-018
[12] Filipovic, K.Z., Sipos, L. and Briski, F. (2000) Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger from aqueous solutions. Food Technology and Biotechnology, 38, 211-216.
[13] Michael, S.P., Classen, J.J. and Payne, G.A. (2001) Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresource Technology, 77, 41-49.
[14] Radojevic, M., Abdullah, M.H. and Aris, A.Z. (2007) Analisis air. Scholar Press, Selangor. doi:10.1016/S0960-8524(00)00135-8
[15] Juliana, M.S. (2003) Kajian logam berat zink, plumbum, ferum, kadmium, chromium & kuprum dalam tumbuhan paku larat. disertasi sarjana sains. Universiti Malaysia Sabah, Kota Kinabalu.
[16] Yu, M.H. (2001) Environment toxicology: Impacts of environmental toxicants on living systems. CRS Press LLC.
[17] Thanapalasingam, V. (2005) Pollution status of the skudai river system through heavy metals. Master of Science Thesis, Universiti Teknologi Malaysia, Skudai.
[18] Blackmore, R. and Reddish, A. (1996) Global environmental issues. Hodder and Stoughton, London.
[19] Sani, R.K., Peyton, B.M. and Brown, L.T. (2001) Copperinduced inhibition of growth of Desulfovibrio deslfuricans G20: Assessment of its toxicity and correlation with those of zinc and lead. Environmental Microbial, 67, 4765-4772. doi:10.1128/AEM.67.10.4765-4772.2001
[20] Siddiquee, S., Abdullah, F., Tan, S.G. and Rohaza, E. (2007) Phylogenetic relationships of Trichoderma harzianum based on the sequence analysis of the internal transcribed spacer region-1 of the rDNA. Journal of Applied Science Research, 3, 896-903.
[21] Siddiquee, S., Tan, S.G., Umi Kalsom, Y., Nur Hasan, N.F. and Hasan, M.M. (2012) Characterization of Malaysian Trichoderma isolates using the Random Amplified Microsatellites (RAMS). Molecular Biology Reports, 29, 715-722. doi:10.1007/s11033-011-0790-6
[22] Siddiquee, S., Umi Kalsom, Y., Hossain, K. and Jahan, S. (2009) In vitro studies on the potential Trichoderma harzianum for antagonistic properties against Ganoderma boninense. International Journal of Food, Agriculture and Environmental, 7, 970-976.
[23] Zapotoczny, S., Jurkiewicz, A., Tylko, G., Anielska, T. and Turnau, K. (2006) Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiological Research, 26, 198-298.
[24] Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C. and Zhou, M. (2008) Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isoterms, kinetics and thermodynamics. Journal of Hazardous Materials, 160, 655-661. doi:10.1016/j.jhazmat.2008.03.038
[25] Gadd, G.M. (1990) Fungi and yeast metal accumulation: Microbial mineral recovery. McGraw-Hill, New York.
[26] Tsekova, K. and Todorova, D. (2002) Copper (II) accumulation and superoxide dismutase activity during growth of Aspergillus niger B-77. Z. Naturforch, 57c, 319-322.
[27] Baldrian, P., Gabriel, J. and Nerud, F. (1996) Effect of cadmium on the ligninolytic activity of Stereum hirsutum and Phanerochaete chrysosporium. Folia Microbiology (Prague), 41, 363-367. doi:10.1007/BF02814716
[28] Venkateswerlu, G., Yoder, M.J. and Stotzky, G. (1989) Morphological, ultra structural and chemical changes induced in Cunninghamella blakesleeana. Applied Microbiology and Biotechnology, 31, 619-625. doi:10.1007/BF00270806
[29] Deshmokh, S.K. and Rai, M.K. (2005) Biodiversity of fungi; their role in human life. Science Publisher Inc., Enfield.
[30] Tobin, J.M., Cooper, D.G. and Neufeld, R.J. (1984) Uptake of metals ions by Rhizopus arrhizus biomass. Applied and Environmental Microbiology, 47, 821-824.
[31] Yalcin, E., Cavusoglu, K. and Kinalioglu, K. (2010) Biosorption of Cu2+ and Zn2+ by raw and autoclaved Rocella phycopsis. Journal of Environmental Science, 22, 367373. doi:10.1016/S1001-0742(09)60117-0

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.