Stress Analysis on Single-Crystal Diamonds by Raman Spectroscopy 3D Mapping
E. J. Di Liscia, F. Álvarez, E. Burgos, E. B. Halac, H. Huck, M. Reinoso
Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina.
Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina..
Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina;Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina..
DOI: 10.4236/msa.2013.43023   PDF    HTML   XML   4,947 Downloads   8,310 Views   Citations

Abstract

Results on stress analysis for single-crystal diamonds are presented. Isolated crystals were studied by Raman mapping and depth profiling techniques, using confocal microscopy. Diamonds were deposited on molybdenum and tantalum by hot filament and microwave CVD methods at growth rates between 10 and 30 μm·h-1. Crystals from 10 to 40 μm size were examined. Local stress was evaluated by analyzing the position, broadening and splitting of the 1332 cm-1 Raman peak in a 3D mapping. For the (001) orientation, the most stressed zone was found at the center of the crystal base, close to the interface with the substrate: a Raman peak around 1340 cm-1 was measured, corresponding to a pressure c.a. 3 GPa, according to our dynamical calculations. This peak disappears few microns out of the center, suggesting that this highly concentrated stress sector was the nucleation zone of the crystal. A shifting and slight broadening of the 1332 cm-1 band was observed in the rest of the crystal. The causes of these effects are discussed: they proved not to be due to anisotropic stress but to refractive effects. Same results were found for different crystal sizes and growth rates.

Share and Cite:

E. Liscia, F. Álvarez, E. Burgos, E. Halac, H. Huck and M. Reinoso, "Stress Analysis on Single-Crystal Diamonds by Raman Spectroscopy 3D Mapping," Materials Sciences and Applications, Vol. 4 No. 3, 2013, pp. 191-197. doi: 10.4236/msa.2013.43023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Teraji, “Chemical Vapor Deposition of Homoepitaxial Diamond Films,” Physica Status Solidi (a), Vol. 203, No. 13, 2006, pp. 3324-3357. doi:10.1002/pssa.200671408
[2] A. Gicquel, K. Hassouni, F. Silva and J. Achard, “CVD Diamond Films: From Growth to Applications,” Current Applied Physics, Vol. 1, No. 6, 2001, pp. 479-496. doi:10.1016/S1567-1739(01)00061-X
[3] M. Schwander and K. Partes, “A Review of Diamond Synthesis by CVD Processes,” Diamond and Related Materials, Vol. 20, No. 9, 2011, pp. 1287-1301. doi:10.1016/j.diamond.2011.08.005
[4] C. T. Kuo, C. R. Lin and H. M. Lien, “Origins of the Residual Stress in CVD Diamond Films,” Thin Solid Films, Vol. 290-291, 1996, pp. 254-259. doi:10.1016/S0040-6090(96)09016-5
[5] Q. H. Fan, J. Grácio and E. Pereira, “Residual Stresses in Chemical Vapour Deposited Diamond Films,” Diamond and Related Materials, Vol. 9, No. 9-10, 2000, pp. 1739-1743. doi:10.1016/S0925-9635(00)00284-3
[6] J. W. Ager III and M. D. Drory, “Quantitative Measurement of Residual Stress by Raman Spectroscopy in Diamond Grown on a Ti Alloy by Chemical Vapor Deposition,” Physical Review B, Vol. 48 No. 4, 1993, pp. 2601-2607. doi:10.1103/PhysRevB.48.2601
[7] H. Kagi, S. Odake, S. Fukura and D. A. Zedgenizov, “Raman Spectroscopic Estimation of Depth of Diamond Origin: Technical Developments and the Application,” Russian Geology and Geophysics, Vol. 50, No. 12, 2009, pp. 1183-1187. doi:10.1016/j.rgg.2009.11.016
[8] M. Mermoux, B. Marcus, A. Crisci, A. Tajani, E. Gheeraert and E. Bustarret, “Micro-Raman Scattering from Undoped and Phosphorous-Doped (111) Homoepitaxial Diamond Films: Stress Imaging of Cracks,” Journal of Applied Physics, Vol. 97, No. 4, 2005, p. 043530. doi:10.1063/1.1849828
[9] Q. H. Fan, A. Fernandes, E. Pereira and J. Grácio, “Evaluation of Biaxial Stress in Diamond Films,” Diamond and Related Materials, Vol. 8, No. 2-5, 1999, pp. 645-650. doi:10.1016/S0925-9635(98)00379-3
[10] S. A. Stuart. S. Prawer and P. S. Weiser, “Growth-Sector Dependence of Fine Structure in the First-Order Raman Diamond Line from Large Isolated Chemical-Vapor-Deposited Diamond Crystals,” Applied Physics Letters, Vol. 62, No. 11, 1993, pp. 1227-1229.
[11] S. A. Stuart, S. Prawer and P. S. Weiser, “Variation of the Raman Diamond Line Shape with Crystallographic Orientation of Isolated Chemical-Vapour-Deposited Diamond Crystals,” Diamond and Related Materials, Vol. 2, No. 5-7, 1993, pp. 753-757. doi:10.1016/0925-9635(93)90217-P
[12] K. W. Nugent and S. Prawer, “Confocal Raman Strain Mapping of Isolated Single CVD Diamond Crystals,” Diamond and Related Materials, Vol. 7, No. 2-5, 1998, pp. 215-221. doi:10.1016/S0925-9635(97)00212-4
[13] N. Everall, “Modeling and Measuring the Effect of Refraction on the Depth Resolution of Confocal Raman microscopy”, Applied Spectroscopy, Vol. 54, No. 6, 2000, pp. 773-782. doi:10.1366/0003702001950382
[14] K. J. Baldwin and D. N. Batchelder, “Confocal Raman Microspectroscopy through a Planar Interface,” Applied Spectroscopy, Vol. 55, No. 5, 2001, pp. 517-524. doi:10.1366/0003702011952190
[15] J. P. Tomba, L. M. Arzondo and J. M. Pastor, “Depth Profiling by Confocal Raman Microscopy: Semi-Empirical Modeling of the Raman Response,” Applied Spectroscopy, Vol. 61, No. 2, 2007, pp. 177-185. doi:10.1366/000370207779947477
[16] J. P. Tomba, M. P. Miguel and C. J. Perez, “Correction of Optical Distortions in Dry Depth Profiling with Confocal Raman Microspectroscopy,” Journal of Raman Spectroscopy, Vol. 42, No. 6, 2011, pp. 1330-1334. doi:10.1002/jrs.2843
[17] M. Pastorczak, M. Wiatrowski, M. Kozanecki, M. Lodzinski and J. Ulanski, “Confocal Raman Microscopy in 3-Dimensional Shape and Composition Determination of Heterogeneous Systems,” Journal of Molecular Structure, Vol. 744-747, 2005, pp. 997-1003. doi:10.1016/j.molstruc.2004.12.001
[18] M. Reinoso, F. álvarez, H. Huck and E. B. Halac, “Diamond Deposited by a Direct Current Hot Cathode Plasma Discharge: Characterization and Applications,” In: T. Eisenberg and E. Schreiner, Eds., Diamonds: Properties, Synthesis and Applications, Nova Science Publishers Inc., Hauppauge, 2011, pp. 113-130.
[19] J. Tersoff, “Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems,” Physical Review B, Vol. 39, No. 8, 1989, pp. 5566-5568. doi:10.1103/PhysRevB.39.5566
[20] E. Burgos, E. Halac and H. Bonadeo, “A Semi-Empirical Potential for the Statics and Dynamics of Covalent Carbon Systems,” Chemical Physics Letters, Vol. 298, No. 4-6, 1998, pp. 273-278. doi:10.1016/S0009-2614(98)01225-1
[21] W. F. Sherman, “The Diamond Raman Band as a High-Pressure Calibrant,” Journal of Physics C: Solid State Physics, Vol. 18, No. 30, 1985, pp. L973-L978. doi:10.1088/0022-3719/18/30/002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.