Body Fluid Changes, Cardiovascular Deconditioning and Metabolic Impairment Are Reversed 24 Hours after a 5-Day Dry Immersion
Mickael Coupé, Elena Tomilovskaya, ,Françoise Larcher, Bertrand Diquet, Liudmila Kh. Pastushkova, Inesa B. Kozlovskaya, Irina M. Larina, Guillemette Gauquelin-Koch, Vladimir A. Kulchitsky, Marc-Antoine Custaud, Nastassia M. Navasiolava
Associated French-Russian Laboratory CaDyWEC, Angers, France & Moscow, Russia..
Biochemistry Laboratory, Angers University Hospital, Angers, France..
CNRS UMR 6214, INSERM U1083, Angers University, Angers, France.
French Space Agency (CNES), Paris, France.
Institute of Biomedical Problems RAS SSC, Moscow, Russia.
Institute of Biomedical Problems RAS SSC, Moscow, Russia..
Institute of Physiology, National Academy of Sciences, Minsk, Belarus..
Pharmacokinetics Laboratory, Angers University Hospital, Angers, France..
DOI: 10.4236/ojneph.2013.31004   PDF    HTML   XML   4,305 Downloads   7,158 Views   Citations

Abstract

Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic effects of dry immersion. We assessed if the principal changes were restored within 24 h of recovery, and determined which changes were mainly associated with immersion-induced orthostatic intolerance. Five-day dry immersion without countermeasures, and with ad libitum water intake, standardized diet and a permitted short daily rise was performed in a relatively large sample for this experiment type (14 healthy young men). Reduction of total body water derived mostly from extracellular compartment, and stabilized rapidly at the new operating point. Decrease in plasma volume was estimated at 20% - 25%. Five-day immersion was sufficient to impair metabolism with a decrease in glucose tolerance and hypercholesterolemia, but was not associated with pronounced autonomic changes. Five-day immersion induced marked cardiovascular impairment. Immediately after immersion, over half of the subjects were unable to accomplish the 20-min 70° tilt; during tilt, heart rate and total peripheral resistance were increased, and stroke volume was decreased. However, 24 hours of normal physical activity appeared sufficient to reverse orthostatic tolerance and all signs of cardiovascular impairment, and to restitute plasma volume and extracellular fluid volume. Similarly, metabolic impairment was restored. In our study, the major factor responsible for orthostatic intolerance appeared to be hypovolemia. The absence of pronounced autonomic dysfunction might be explained by relatively short duration of dry immersion and daily short-time orthostatic stimulation.

Share and Cite:

Coupé, M. , Tomilovskaya, E. , Larcher, ,. , Diquet, B. , Pastushkova, L. , Kozlovskaya, I. , Larina, I. , Gauquelin-Koch, G. , Kulchitsky, V. , Custaud, M. and Navasiolava, N. (2013) Body Fluid Changes, Cardiovascular Deconditioning and Metabolic Impairment Are Reversed 24 Hours after a 5-Day Dry Immersion. Open Journal of Nephrology, 3, 13-24. doi: 10.4236/ojneph.2013.31004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Epstein, “Cardiovascular and Renal Effects of Head-Out Water Immersion in Man: Application of the Model in the Assessment of Volume Homeostasis,” Circulation Research, Vol. 39, No. 5, 1976, pp. 619-628. doi:10.1161/01.RES.39.5.619
[2] M. Epstein, “Renal, Endocrine and Hemodynamic Effects of Water Immersion in Humans,” In: M. J. Fregly and C. M. Blatteis, Eds., Handbook of Physiology, Environmental Physiology, Oxford University Press, Oxford, 1996, pp. 845-853.
[3] J. E. Greenleaf, “Physiological Responses to Prolonged Bed Rest and Fluid Immersion in Humans,” Journal of Applied Physiology, Vol. 57, No. 3, 1984, pp. 619-633.
[4] N. M. Navasiolava, M. A. Custaud, E. S. Tomilovskaya, I. M. Larina, T. Mano, G. Gauquelin-Koch, C. Gharib and I. B. Kozlovskaya, “Long-Term Dry Immersion: Review and Prospects,” European Journal of Applied Physiology, Vol. 111, No. 7, 2011, pp. 1235-1260. doi:10.1007/s00421-010-1750-x
[5] M. E. Widlansky, “The Danger of Sedenterism: Endothelium at Risk,” Heart and Circulatory Physiology: American Journal of Physiology, Vol. 299, No. 2, 2010, pp. 243-244. doi:10.1152/ajpheart.00505.2010
[6] M. A. Iunusov, V. N. Orlov and T. V. Vinokhodova, “Effect of the Model of ‘Dry’ Immersion on the Indicators of Water-Electrolyte Metabolism and Aldosterone and Cortisol in the Plasma of Persons with Different Levels of Body Water,” Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, Vol. 19, No. 4, 1985, pp. 42-45.
[7] S. G. Ivanov and E. E. Bogomazov, “‘Dry’ Immersion and Prospects of Its Use in Clinical Practice,” Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, Vol. 22, No. 5, 1988, pp. 4-6.
[8] S. G. Ivanov and L. I. Markova, “Use of a ‘Dry’ Immersion Method in the Treatment of Hypertensive Crisis,” Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, Vol. 24, No. 1, 1990, pp. 40-42.
[9] N. M. Navasiolava, V. de Germain, T. Levrard, I. M. Larina, I. B. Kozlovskaya, B. Diquet, A. Le Bouil, M. A. Custaud and J. O. Fortrat, “Skin Vascular Resistance in the Standing Position Increases Significantly after 7 Days of Dry Immersion,” Auto-nomic Neuroscience, Vol. 160, No. 1-2, 2011, pp. 64-68. doi:10.1016/j.autneu.2010.10.003
[10] M. Coupé, M. Yuan, C. Demiot, Y. Q. Bai, S. Z. Jiang, Y. Z. Li, P. Arbeille, G. Gauquelin-Koch, T. Levrard, M. A. Custaud and Y. H. Li, “Low-Magnitude Whole Body Vibration with Resistive Exercise as a Countermeasure against Cardiovascular Deconditioning after 60 Days of Head-Down Bed Rest,” American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, Vol. 301, No. 6, 2011, pp. 1748-1754. doi:10.1152/ajpregu.00234.2011
[11] V. P. Krotov, T. E. Burkovskaia, M. A. Dotsenko, Iu. V. Gordeev, A. M. Nosovskii and N. A. Chel’naia, “Blood Plasma Volume Dynamics in Monkeys during Immersion,” Aviakosmicheskaia i Ekologicheskaia Meditsina, Vol. 38, No. 3, 2004, pp. 30-36.
[12] N. M. Navasiolava, A. Pajot, Y. Gallois, L. Kh. Pastushkova, V. A. Kulchitsky, G. Gauquelin-Koch, I. B. Kozlovskaya, M. Heer, O. Hand, I. M. Larina and M. A. Custaud, “NT-ProBNP Levels, Water and Sodium Homeostasis in Healthy Men: Effects of 7 Days of Dry Immersion,” European Journal of Applied Physiology, Vol. 111, No. 9, 2011, pp. 2229-2237. doi:10.1007/s00421-011-1858-7
[13] J. A. Krasney, “Head-Out Water Immersion: Animal Studies,” In: M. J. Fregly and C. M. Blatteis, Eds., Handbook of Physiology, Environmental Physiology, Oxford University Press, Oxford, 1996, pp. 855-887.
[14] K. I. Gogolev, E. A. Aleksandrova and E. B. Shul’zhenko, “Comparative Assessment of Changes during Antiorthostatic Hypokinesia and Immersion in Man,” Human Physiology, Vol. 6, No. 6, 1980, pp. 392-396.
[15] A. M. Chaika and I. S. Balakhovskii, “Changes in Plasma and Extracellular Fluid Volumes and Plasma Protein Mass under Conditions of Head-Down Tilt Hypokinesia and Immersion,” Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, Vol. 16, No. 6, 1982, pp. 22-28.
[16] A. Bergouignan, I. Momken, D. A. Schoeller, S. Normand, A. Zahariev, B. Lescure, C. Simon and S. Blanc, “Regulation of Energy Balance during Long-Term Physical Inactivity Induced by Bed Rest with and without Exercise Training,” Journal of Clinical Endocrinology & Metabolism, Vol. 95, No. 3, 2010, pp. 1045-1053. doi:10.1210/jc.2009-1005
[17] S. Blanc, S. Normand, C. Pachiaudi, J. O. Fortrat, M. Laville and C. Gharib, “Fuel Homeostasis during Physical Inactivity Induced by Bed Rest,” Journal of Clinical Endocrinology & Metabolism, Vol. 85, No. 6, 2000, pp. 2223-2233. doi:10.1210/jc.85.6.2223
[18] N. M. Hamburg, C. J. McMackin, A. L. Huang, S. M. Shenouda, M. E. Widlansky, E. Schulz, N. Gokce, N. B. Ruderman, J. F. Keaney Jr. and J. A. Vita, “Physical Inactivity Rapidly Induces Insulin Resistance and Microvascular Dysfunction in Healthy Volunteers,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 27, No. 12, 2007, pp. 2650-2656. doi:10.1161/ATVBAHA.107.153288
[19] M. Fenske, “Urinary Free Cortisol and Cortisone Excretion in Healthy Individuals: Influence of Water Loading,” Steroids, Vol. 71, No. 11-12, 2006, pp. 1014-1018. doi:10.1016/j.steroids.2006.08.004
[20] J. C. Buckey Jr., L. D. Lane, B. D. Levine, D. E. Watenpaugh, S. J. Wright, W. E. Moore, F. A. Gaffney and C. G. Blomqvist, “Orthostatic Intolerance after Spaceflight,” Journal of Applied Physiology, Vol. 81, No. 1, 1996, pp. 7-18.
[21] V. A. Convertino, “Exercise and Adaptation to Micro-gravity Environment,” In: M. J. Fregly and C. M. Blatteis, Eds., Handbook of Physiology, Environmental Physiology, Oxford University Press, Oxford, 1996, pp. 815-843.
[22] V. A. Convertino, “Mechanisms of Microgravity Induced Orthostatic Intolerance: Implications for Effective Countermeasures,” Journal of Gravitational Physiology, Vol. 9, No. 2, 2002, pp. 1-13.
[23] K. A. Engelke, D. F. Doerr, C. G. Crandall and V. A. Convertino, “Application of Acute Maximal Exercise to Protect Orthostatic Tolerance after Simulated Microgravity,” American Journal of Physiology, Vol. 271, No. 4, 1996, pp. R837-R847.
[24] T. Mano, “Autonomic Neural Functions in Space,” Current Pharmaceutical Biotechnology, Vol. 6, No. 4, 2005, pp. 319-324. doi:10.2174/1389201054553743
[25] A. I. Grigor’ev, I. B. Kozlovskaia and B. S. Shenkman, “The Role of Support Afferents in Organization of the Tonic Muscle System,” Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, Vol. 90, No. 5, 2004, pp. 508- 521.
[26] L. F. Zhang, “Vascular Adaptation to Microgravity: What Have We Learned?” Journal of Applied Physiology, Vol. 91, No. 6, 2001, pp. 2415-2430.
[27] M. Coupe, J. O. Fortrat, I. M. Larina, G. Gauquelin-Koch, C. Gharib and M. A. Custaud, “Cardiovascular Deconditioning: From Autonomic Nervous System to Microvascular Dysfunctions,” Respiratory Physiology & Neurobiology, Vol. 169, No. 1, 2009, pp. 10-12. doi:10.1016/j.resp.2009.04.009
[28] P. C. de Groot, M. W. Bleeker and M. T. Hopman, “Magnitude and Time Course of Arterial Vascular Adaptations to Inactivity in Humans,” Exercise and Sport Sciences Reviews, Vol. 34, No. 2, 2006, pp. 65-71. doi:10.1249/00003677-200604000-00005
[29] V. A. Convertino, “Clinical Aspects of the Control of Plasma Volume at Microgravity and during Return to one Gravity,” Medicine & Science in Sports & Exercise, Vol. 28, No. 10, 1996, pp. 45-52. doi:10.1097/00005768-199610000-00033
[30] E. F. Coyle, M. K. Hemmert and A. R. Coggan, “Effects of Detraining on Cardiovascular Responses to Exercise: Role of Blood Volume,” Journal of Applied Physiology, Vol. 60, No. 1, 1986, pp. 95-99.
[31] W. W. Waters, S. H. Platts, B. M. Mitchell, P. A. Whitson and J. V. Meck, “Plasma Volume Restoration with Salt Tablets and Water after Bed Rest Prevents Orthostatic Hypotension and Changes in Supine Hemodynamic and Endocrine Variables,” Heart and Circulatory Physiology: American Journal of Physiology, Vol. 288, No. 2, 2005, pp. 839-847. doi:10.1152/ajpheart.00220.2004
[32] J. Vernikos and V. A. Convertino, “Advantages and Disadvantages of Fludrocortisone or Saline Load in Preventing Post-Spaceflight Orthostatic Hypotension,” Acta Astronaut, Vol. 33, 1994, pp. 259-266. doi:10.1016/0094-5765(94)90133-3
[33] M. A. Custaud, C. Millet, J. Frutoso, A. Maillet, G. Gauquelin, C. Gharib and J. O. Fortrat, “No Effect of Venoconstrictive Thigh Cuffs on Orthostatic Hypotension Induced by Head-Down Bed Rest,” Acta Physiologica Scandinavica, Vol. 170, No. 2, 2000, pp. 77-85. doi:10.1046/j.1365-201x.2000.00763.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.