Chalcogenide As2S3 Sidewall Bragg Gratings Integrated on LiNbO3 Substrate

Abstract

This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented. These integrated As2S3 sidewall gratings on LiNbO3 substrate provide an approach to the design of a wide range of integrated optical devices including switches, laser cavities, modulators, sensors and tunable filters.

Share and Cite:

X. Wang, A. Jiang and C. Madsen, "Chalcogenide As2S3 Sidewall Bragg Gratings Integrated on LiNbO3 Substrate," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 78-87. doi: 10.4236/opj.2013.31013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Melloni, M. Chinello and M. Martinelli, “All-Optical Switching In Phase-Shifted Fiber Bragg Grating,” IEEE Photonics Technology Letters, Vol. 12, No. 1, 2000, pp. 42-44. doi:10.1109/68.817464
[2] L. Pierno, M. Dispenza, A. Secchi, A. Fiorello and V. Foglietti, “A Lithium Niobate Electro-Optic Tunable Bragg Filter Fabricated by Electron Beam Lithography,” Journal of Optics A: Pure and Applied Optics, Vol. 10, No. 6, 2008, Article ID: 064017. doi:10.1088/1464-4258/10/6/064017
[3] B. K. Das, R. Richen and W. Sohler, “Integrated Optical Distributed Feedback Laser with Ti:Fe:Er:LiNbO3 Wave guide,” Applied Physics Letters, Vol. 82, No. 10, 2003, pp. 1515-1517. doi:10.1063/1.1559443
[4] R. Kim, J. Zhang, O. Eknoyan, H. F. Taylor and T. L. Smitch, “Fabry-Perot Intensity Modulator with Integrated Bragg Reflectors in Ti:LiNbO3,” Electronics Letters, Vol. 41, 2005, pp. 1220-1222. doi:10.1049/el:20053038
[5] J. H. Song, J. H. Lim, R. K. Kim, K. S. Lee, K.-Y. Kim, J. Cho, D. Han, S. Jung, Y. Oh and D.-H Jang, “Bragg Grating-Assisted WDM Filter for Integrated Optical Triplexer Transceivers,” IEEE Photonics Technology Letters, Vol. 17, No. 12, 2005, pp. 2607-2609. doi:10.1109/LPT.2005.859181
[6] L. Zhu, Y. Huang, W. M. J. Green and A. Yariv, “Polymeric Multi-Channel Bandpass Filters in Phase-Shifted Bragg Waveguide Gratings by Direct Electron Beam Writing,” Optics Express, Vol. 12, No. 25, 2004, pp. 6372-6376. doi:10.1364/OPEX.12.006372
[7] H.-C. Kim, K. Ikeda and Y. Fainman, “Tunable Transmission Resonant Filter and Modulator with Vertical Gratings,” Journal of Lightwave Technology, Vol. 25, No. 5, 2007, pp. 1147-1151. doi:10.1109/JLT.2007.893922
[8] Y.-B. Cho, B.-K. Yang, J.-H. Lee and J.-B. Yoon, “Silicon Photonic Wire Filter Using Asymmetric Sidewall Long-Period Waveguide Grating in a Two-Mode Wave guide,” IEEE Photonics Technology Letters, Vol. 20, No. 7, 2008, pp. 520-522. doi:10.1109/LPT.2008.918895
[9] H.-C. Kim, K. Ikeda and Y. Fainman, “Resonant Wave guide Device with Vertical Gratings,” Optics Letters, Vol. 32, No. 5, 2007, pp. 539-541. doi:10.1364/OL.32.000539
[10] R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall and H. Schriemer, “The Impact of Laterally Coupled Grating Microstructure on Effective Coupling Coefficients,” Nanotechnology, Vol. 21, No. 13, 2010, Article ID: 134015. doi:10.1088/0957-4484/21/13/134015
[11] J. T. Hastings, M. H. Lim, J. G. Goodberlet and H. I. Smith, “Optical Waveguides with Apodized Sidewall Gratings via Spatial-Phase-Locked Electron-Beam Lithography,” Journal of Vacuum Science & Technology B, Vol. 20, No. 6, 2002, pp. 2753-2757. doi:10.1116/1.1521744
[12] A. Lupu, K. Muhieddine, E. Cassan and J.-M. Lourtioz, “Dual Transmission Band Bragg Grating Assisted Asymmetric Directional Couplers,” Optics Express, Vol. 19, No. 2, 2011, pp. 1246-1259. doi:10.1364/OE.19.001246
[13] P. Ma, Y. Fedoryshyn and H. Jachel, “Ultrafast All-Optical Switching Based on Cross Modulation Utilizing Intersubband Transitions in InGaAs/AlAs/AlAsSb Coupled Quantum Wells with DFB Grating Wave guides,” Optics Express, Vol. 19, No. 10, 2011, pp. 9461-9474. doi:10.1364/OE.19.009461
[14] P. Prahbathan, V. M. Murukeshan, Z. Jing and P. V. Ramana, “Compact SOI Nanowire Refractive Index Sensor Using Phase Shifted Bragg Gratings,” Optics Express, Vol. 17, No. 17, 2009, pp. 15330-15341. doi:10.1364/OE.17.015330
[15] A. M. Prokhorov, Y. S. Kuzminov and O. A. Khacha turyan, “Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics,” Cambridge International Science Publishing, Cambridge, 1997.
[16] B.-E. Benkelfat, T. Ferriere, B. Wacogne and P. Mollier, “Technological Implementation of Bragg Gratings Reflectors in Ti:LiNbO3 Waveguides by Proton Exchange,” IEEE Photonics Technology Letters, Vol. 14, No. 10, 2002, pp. 1430-1432. doi:10.1109/LPT.2002.801106
[17] C. Madsen, W. C. Tan, X. Xia, W. Snider and I. Zhou, “Hybrid Chalcogenide/Lithium Niobate Waveguides,” Conference on Novel Hybrid Integration, Frontiers in Optics (FiO) 2010/Laser Science (LS) XXVI, Rochester, 24-28 October 2010.
[18] Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode and Luther-Davis, “Fabrication and Characterization of Low Loss Rib Chalcogenide Waveguides Made by Dry Etching,” Optics Express, Vol. 12, No. 21, 2004, pp. 5140 5145. doi:10.1364/OPEX.12.005140
[19] X. Xia, Q. Chen, C. Tsay, C. B. Arnold and C. K. Madsen, “Low-Loss Chalcogenide Waveguides on Lithium Niobate for the Mid-Infrared,” Optics Letters, Vol. 35, No. 19, 2010, pp. 3228-3230. doi:10.1364/OL.35.003228
[20] C. Madsen, M. Solmaz and R. Atkins, “High-Index-Con trast Chalcogenide Waveguides,” Proceedings of SPIE, Vol. 6897, 2008, Article ID: 689703. doi:10.1117/12.768583
[21] M. E. Solmaz, D. B. Adams, S. Grover, W.-C. Tan, X. Xia, O. Eknoyan and C. K. Madsen, “Compact Bends for Achieving Higher Integration Densities for LiNbO3 Waveguides,” IEEE Photonics Technology Letters, Vol. 21, No. 9, 2009, pp. 557-559. doi:10.1109/LPT.2009.2014569
[22] Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan and C. K. Madsen, “Two-Stage Taper Enhanced Ul tra-High Q As2S3 Ring Resonator on LiNbO3,” IEEE Photonics Technology Letters, Vol. 23, 2011, pp. 1195-1197.
[23] D. Lee, “Electromagnetic Principles of Integrated Op tics,” Jphn Wiley & Sons, New York, 1986, Chap. 8.
[24] A. Yariv and A. P. Yeh, “Photonics: Optical Electronics in Modern Communications,” 6th Edition, Oxford University Press, New York, 2007.
[25] J. Hong and W. Huang, “Contra-Directional Coupling in Grating-Assisted Guided-Wave Devices,” Journal of Lightwave Technology, Vol. 10, No. 7, 1992, pp. 873-881. doi:10.1109/50.144907
[26] U. Schlarb and K. Berzler, “A Generalized Sellmeier Equation for the Refractive Indices of Lithium Niobate,” Ferroelectrics, Vol. 156, No. 1, 1993, pp. 99-104. doi:10.1080/00150199408215934
[27] C. Chaudhari, T. Suzuki and Y. Ohishi, “Design of Zero Chromatic Dispersion Chalcogenide As2S3 Glass Nanofibers,” Journal of Lightwave Technology, Vol. 27, No. 12, 2009, pp. 2095-2099. doi:10.1109/JLT.2008.2007223
[28] P. Prabhathan, V. M. Murukeshan and Z. Jing, “Compact Resonant Bragg Grating Filters Using Submicron Silicon-on-Insulator (SOI) Waveguide for Optical Commu nication Network,” Proceedings of SPIE, Vol. 7847, 2010, Article ID: 74870.
[29] L. Pierno, M. Dispenza, A. Secchi, A. Fiorello and V. Foglietti, “A Lithium Niobate Electro-Optic Tunable Bragg Filter Fabricated by Electron Beam Lithography,” Journal of Optics A: Pure and Applied Optics, Vol. 10, No. 6, 2008, Article ID: 064017. doi:10.1088/1464-4258/10/6/064017
[30] I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” Journal of Lightwave Technology, Vol. 14, No. 3, 1996, pp. 403-409. doi:10.1109/50.485600

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.