[1]

R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.


[2]

Y. Baryshev and P. Teerikorpi, “Discovery of Cosmic Fractals,” World Scientific, Singapore, 2002.


[3]

L. Nottale, “Scale Relativity,” Imperial College Press, London, 2011.


[4]

L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.


[5]

J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” 18 December 2001, arXiv:hepth/0112090V2.


[6]

J. Mageuijo, “Faster Than the Speed of Light,” William Heinemann, London, 2003.


[7]

M. S. El Naschie, “The theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 26352646. doi:10.1016/j.chaos.2008.09.059


[8]

M. S. El Naschie, “The Discrete Charm of Certain Eleven Dimensional Spacetime Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 477481.


[9]

C. Nash and S. Sen, “Topology and Geometry for Physicists,” Academic Press, San Diego, 1983.


[10]

D. Joyce, “Compact Manifolds with Special Holonomy,” Oxford Press, Oxford, 2003.


[11]

S. Yau and S. Nadis, “The Shape of Inner Space,” Perseus Book Group, New York, 2010.


[12]

J. Polchinski, “String Theory,” Cambridge University Press, Cambridge, 1999.


[13]

M. S. El Naschie, “On a Class of Fuzzy K?hlerLike Manifolds,” Chaos, Solitons & Fractals, Vol. 26, No. 2, 2005, pp. 257261. doi:10.1016/j.chaos.2004.12.024


[14]

M. S. El Naschie, “EInfinity—Some Recent Results and New Interpretations,” Chaos, Solitons & Fractals, Vol. 29, No. 4, 2006, pp. 845853.
doi:10.1016/j.chaos.2006.01.073


[15]

C. Rovelli, “Quantum Gravity,” Cambridge Press, Cambridge, 2004. doi:10.1017/CBO9780511755804


[16]

M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry,” Journal of Quantum Information Science, Vol. 1, 2011, pp. 5053. doi:10.4236/jqis.2011.12007
http://www.SCRIP.org/journal/jqis


[17]

J.H. He, et al., “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Space time,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 4550.


[18]

M. Planck, “Spacecraft,” Wikipedia, 2012.
http://en.wikipedia.org/wiki/Planck


[19]

R. Panek, “Dark Energy: The Biggest Mystery in the Universe,” The Smithsonian Magazine, 2010.
http://www.smithsonianmagazine.com/sciencenature/DarkEnergyApril (2010)


[20]

D. R. Finkelstein, “Quantum Relativity,” Springer, Berlin, 1996. doi:10.1007/9783642609367


[21]

H. Saller, “Operational Quantum Theory,” Springer, Berlin, 2006.


[22]

L. Hardy, “NonLocality of Two Particles without Inequalities for Almost All Entangled States,” Physical Review Letters, Vol. 71, No. 11, 1993, pp. 16651668.
doi:10.1103/PhysRevLett.71.1665


[23]

M. Duff, “The World in Eleven Dimensions,” IOP Publishing, Bristol, 1999.


[24]

M. S. El Naschie, “Revising Einstein’s E = mc^{2}. A Theoretical resolution of the Mystery of Dark Energy,” Conference Program and Abstracts of the Fourth Arab International Conference in Physics and Material Sciences, Alexandria, 13 October 2012, p. 1.


[25]

M. S. El Naschie and L. MarekCrnjac, “Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity,” International Journal of Modern Nonlinear Theory and Application, in Press, 2012.


[26]

J.H. He, “A Historical Scientific Finding on Dark Energy,” Fractal Spacetime and NonCommutatitve Geometry in Quantum and High Energy Physics, Vol. 2, No. 2, 2012. p. 154.


[27]

L. Sigalotti and A. Mejias, “The Golden Mean in Special Relativity,” Chaos, Solitons & Fractals, Vol. 30, No. 3, 2006, pp. 521524. doi:10.1016/j.chaos.2006.03.005


[28]

S. Hendi and M. Sharif Zadeh, “Special Relativity and the Golden Mean,” Journal of Theoretical Physics, Vol. 1, IAU Publishing, 2012, pp. 3745.


[29]

L. Smolin, “Three Roads to Quantum Gravity,” Weindenfald & Nicolson, London, 2000.


[30]

M. S. El Naschie, “Stress, Stability and Chaos in Structural Engineering,” McGraw Hill, London, 1990.


[31]

C. Lanczos, “The Variational Principles of Mechanics,” 4th Edition, University of Toronto Press, Toronto, 1949.


[32]

G. Barenblatt, “Scaling,” Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511814921

