Comparative Analyses of Stomatal Size and Density among Ecotypes of Aster hispidus (Asteraceae)

Abstract

To determine the size and the density of stomata among different environments, we conducted anatomical analyses using Aster hispidus var. hispidus (open field), As. hispidus var. leptocladus (serpentine soil), and As. hispidus var. insularis (coastal). The stomatal size was not significantly different among these ecotypes but the density of stomata in the serpentine and coastal ecotypes was significantly lower than that of As. hispidus var. hispidus, which suggests that these ecotypes have experienced selection that reduced the density of stomata for adaptation to the dry conditions of serpentine and coastal areas.

Share and Cite:

Y. Kumekawa, H. Miyata, K. Ohga, H. Hayakawa, J. Yokoyama, K. Ito, S. Tebayashi, R. Arakawa and T. Fukuda, "Comparative Analyses of Stomatal Size and Density among Ecotypes of Aster hispidus (Asteraceae)," American Journal of Plant Sciences, Vol. 4 No. 3, 2013, pp. 524-527. doi: 10.4236/ajps.2013.43067.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Hetherington and F. I. Woodward, “The Role of Stomata in Sensing and Driving Environmental Change,” Nature, Vol. 424, No. 6951, 2003, pp. 901-908. doi:10.1038/nature01843
[2] J. Parlange and P. E. Waggoner, “Stomatal Dimensions and Resistance to Diffusion,” Plant Physiology, Vol. 46, No. 1, 1970, pp. 337-342. doi:10.1104/pp.46.2.337
[3] P. J. Franks and D. J. Beerling, “Maximum Leaf Conductance Driven by CO2 Effects on Stomatal Size and Density over Geologic Time,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 23, 2009, pp. 10343-10347.
[4] K. Raschke, “Stomatal Action,” Annual Review of Plant Physiology, Vol. 26, No. 1, 1975, pp. 309-340. doi:10.1146/annurev.pp.26.060175.001521
[5] P. J. Franks and G. D. Farquhar, “The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control,” Plant Physiology, Vol. 143, No. 1, 2007, pp. 78-87. doi:10.1104/pp.106.089367
[6] G. D. Farquhar and T. D. Sharkey, “Stomatal Conductance and Photosynthesis,” Annual Review of Plant Physiology, Vol. 33, No. 1, 1982, pp. 317-345. doi:10.1146/annurev.pp.33.060182.001533
[7] K. Aasamaa, A. Sober and M. Rahi, “Leaf Anatomical Characteristics Associated with Shoot Hydraulic Conductance, Stomatal Conductance and Stomatal Sensitivity to Changes of Leaf Water Status in Temperate Deciduous Trees,” Australian Journal of Plant Physiology, Vol. 28, No. 8, 2001, pp. 765-774. doi:10.1071/PP00157
[8] P. J. Franks, P. L. Drake and D. J. Beerling, “Plasticity in Maximum Stomatal Conductance Constrained by Negative Correlation between Stomatal Size and Density: An Analysis Using Eucalyptus globulus,” Plant, Cell & Environment, Vol. 32, No. 12, 2009, pp. 1737-1748.
[9] S. Kitamura, “Compositae (Asteraceae),” In: Y. Satake, J. Ohwi, S. Kitamura, S. Watari and T. Tominari, Eds., Wild Flowers of Japan Herbaceous Plants Vol. 3, Heibonsha, Tokyo, 1981, pp. 156-235.
[10] M. Igari, “Wild Aster & Chrysanthemum of Japan,” Mei-kousha, Tokyo, 2007.
[11] Tunala, H. Hayakawa, Y. Minamiya, S. W. Gale, J. Yokoyama, R. Arakawa and T. Fukuda, “Foliar Adaptations in Aster hispidus var. insularis (Asteraceae),” Journal of Plant Studies, Vol. 1, No. 2, 2012, pp. 19-25. doi:10.5539/jps.v1n2p19
[12] R Development Core Team, “R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,” Vienna, 2011. http://www.R-project.org/S
[13] I. E. Keeley and P. W. Rundel, “Evolution of CAM and C-4 Carbon-Concentrating Mechanisms,” International Journal of Plant Sciences, Vol. 164, No. S3, 2003, pp. S55-S77. doi:10.1086/374192
[14] A. Henry, V. R. P. Gowda, R. O. Torres, K. L. McNally and R. Serraj, “Variation in Root System Architecture and Drought Response in Rice (Oryza sativa): Phenotyping of the OryzaSNP Panel in Rainfed Lowland Fields,” Field Crops Research, Vol. 120, No. 2, 2011, pp. 205-214. doi:10.1016/j.fcr.2010.10.003
[15] K. Brady, A. Kruckberg and H. Bradshaw, “Evolutionary Ecology of Plant Adaptation to Serpentine Soils,” Annual Reviews in Ecology Evolution and Systematics, Vol. 36, No. 1, 2005, pp. 243-266. doi:10.1146/annurev.ecolsys.35.021103.105730
[16] T. Mizuno, K. Horie, S. Nosaka, H. Obata and N. Mizuno, “Serpentine Plants in Hokkaido and their Chemical Characteristics,” Northeastern Naturalist, Vol. 16, No. 5, 2009, pp. 65-80. doi:10.1656/045.016.0506
[17] K. Ohga, M. Muroi, H. Hayakawa, J. Yokoyama, K. Ito, S. Tebayashi, R. Arakawa and T. Fukuda, “Morphological and Anatomical Analyses of the Serpentine Ecotype of Adenophora triphylla var. japonica (Campanulaceae),” Journal of Plant Studies, Vol. 1, No. 2, 2012, pp. 180-187. doi:10.5539/jps.v1n2p180
[18] H. Hayakawa, Tunala, Y. Minamiya, S. Gale, J. Yokoyama, K. Ito, R. Arakawa and T. Fukuda, “Comparative Study of Leaf Morphology in Aster hispidus Thunb. var. leptocladus (Makino) Okuyama (Asteraceae),” American Journal of Plant Science, Vol. 3, No. 1, 2012, pp. 110-113.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.