Share This Article:

Determination of amino-acidic positions important for Ocimum basilicum geraniol synthase activity

Abstract Full-Text HTML XML Download Download as PDF (Size:726KB) PP. 242-249
DOI: 10.4236/abb.2013.42033    3,933 Downloads   6,668 Views   Citations

ABSTRACT

Terpenes are one of the largest and most diversified families of natural compounds. Although they have found numerous industrial applications, the molecular basis of their synthesis in plants has, until now, not been fully understood. Plant genomes have been shown to contain dozens of terpene synthase (TPS) genes, however knowledge of their amino-acidic protein sequence in not sufficient to predict which terpene(s) will be produced by a particular enzyme. In order to investigate the structural basis of a TPS specificity, we performed site directed mutations in the geraniol synthase from Ocimum basilicum. The results obtained suggest that a specific region on the catalytic site plays an important role in GPP transformation, either by stabilizing the GPP substrate on the catalytic site, or by enabling its transformation into a monoterpenol via an intermediate carbocation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Fischer, M. , Meyer, S. , Claudel, P. , Steyer, D. , Bergdoll, M. and Hugueney, P. (2013) Determination of amino-acidic positions important for Ocimum basilicum geraniol synthase activity. Advances in Bioscience and Biotechnology, 4, 242-249. doi: 10.4236/abb.2013.42033.

References

[1] Withers, S.T. and Keasling, J.D. (2007) Biosynthesis and engineering of isoprenoid small molecules. Applied Microbiology and Biotechnology, 73, 980-990. doi:10.1007/s00253-006-0593-1
[2] Hayashi, K., Kawaide, H., Notomi, M., Sakigi, Y., Matsuo, A. and Nosaki, H. (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Letters, 580, 61756181. doi:10.1016/j.febslet.2006.10.018
[3] Dittmar, K. and Liberles, D. (2010) Evolution after gene duplication. Wiley-Blackwell, New York.
[4] Trapp, S.C. and R.B. (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158, 811-832.
[5] Martin, D.M., Aubourg, S., Schouwey, M.B., Daviet, L., Schalk, M., Toub, O., Lund, S.T. and Bohlmann, J. (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 10, 226. doi:10.1186/1471-2229-10-226
[6] Dickschat, J.S. (2011) Isoprenoids in three-dimensional space: The stereochemistry of terpene biosynthesis. Natural Product Reports, 28, 1917-1936. doi:10.1039/c1np00063b
[7] Mukherjee, M. and Datta, A.K. (2007) The basils—A review. Plant Arches, 7, 473-483.
[8] Morales, M.R. and Simon, J.E. (1997) “Sweet Dani”: A new culinary and ornamental lemon basil. HortScience, 32, 148-149.
[9] Iijima, Y., Gang, D.R., Fridman, E., Lewinsohn, E. and Pichersky, E. (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiology, 134, 370-379. doi:10.1104/pp.103.032946
[10] Iijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D., Bar, E., Lewinsohn, E. and Pichersky, E. (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiology, 136, 3724-3736. doi:10.1104/pp.104.051318
[11] Kampranis, S.C., Ioannidis, D., Purvis, A., Mahrez, W., Ninga, N., Katerelos, N.A., Ansour, S., Dunwell, J.M., Degenhardt, J., Makris, A.M., Goodenough, P.W. and Johnson, C.B. (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell, 19, 1994-2005. doi:10.1105/tpc.106.047779
[12] Masumoto, N., Korin, M. and Ito, M. (2010) Geraniol and linalool synthases from wild species of perilla. Phytochemistry, 71, 1068-1075. doi:10.1016/j.phytochem.2010.04.006
[13] Fischer, M.J.C., Meyer, S., Claudel, P., Bergdoll, M. and Karst, F. (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnology and Bioengineering, 108, 1883-1892. doi:10.1002/bit.23129
[14] Sagot, I., Bonneu, M., Balguerie, A. and Aigle, M. (1999) Imaging fluorescence resonance energy transfer between two green fluorescent proteins in living yeast. FEBS Letters, 447, 53-57. doi:10.1016/S0014-5793(99)00258-6
[15] Coelho, E., Perestrelo, R., Neng, N.R., Camara, J.S., Coimbra, M.A., Nogueira, J.M.F. and Rocha, S.M. (2008) Optimisation of stir bar sorptive extraction and liquid desorption combined with large volume injection-gas chromatography-quadrupole mass spectrometry for the determination of volatile compounds in wines. Analytica Chimica Acta, 624, 79-89. doi:10.1016/j.aca.2008.06.032
[16] Sali, A. and Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779-815. doi:10.1006/jmbi.1993.1626
[17] Hyatt, D.C., Youn, B.Y., Zhao, Y.X., Santhamma, B., Coates, R.M., Croteau, R.B. and Kang, C.H. (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proceedings of National Academy of Sciences USA, 104, 5360-5365. doi:10.1073/pnas.0700915104
[18] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882. doi:10.1093/nar/25.24.4876
[19] DeLano, W.L. (2002) The PyMOL molecular graphics system on world wide web. http://www.pymol.org
[20] Chen, F., Tholl, D., Bohlmann, J. and Pichersky, E. (2011) he family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 66, 212229. doi:10.1111/j.1365-313X.2011.04520.x
[21] K?ksal, M., Jin, Y., Coates, R.M., Croteau, R. and Christianson, D.W. (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature, 469, 116-120. doi:10.1038/nature09628
[22] Hillwig, M.L., Xu, M., Toyomasu, T., Tiernan, M.S., Wei, G., Cui, G., Huang, L. and Peters, R.J. (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant Journal, 68, 1051-1060. doi:10.1111/j.1365-313X.2011.04756.x
[23] Fischer, M.J.C., Meyer, S., Claudel, P., Bergdoll, M. and Karst, F. (2011) Identification of a lysine residue important for the catalytic activity of yeast farnesyl diphosphate synthase. Protein Journal, 30, 334-339. doi:10.1007/s10930-011-9336-y
[24] Zhou, K., Gao, Y., Hoy, J.A., Mann, F.M., Honzatko, R.B. and Peters, R.B. (2012) Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. Journal of Biological Chemistry, 287, 6840-6850. doi:10.1074/jbc.M111.337592

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.