The Crystallographic and Optical Studies on Cobalt Doped CdS Nanoparticles

Abstract

The samples of Cd1 - xCoxS with compositions x = 0.0 & 0.6 were prepared by Co-precipitation route at room temperature. XRD analysis confirms that the samples have cubic structure with no impurity phases. The lattice parameter, volume cell, X-ray density and grain size were calculated using XRD data. It is found that lattice parameter, volume of unit cell and X-ray density decrease with enhancing Co content. It is due to the smaller ionic radius of Co than the Cd. It is well noticed that the grain size increases with increasing Co content, it may be owing to the good synthesis technique. The functional groups and chemical interaction were determined by FTIR spectra. From FTIR spectra, it is investigated that absorption bands show the presence of resonance interaction between vibrational modes of oxide ions in the crystal. The energy band gap of Co doped CdS samples was calculated using UV-Vis analysis. It is observed that energy band gap decreases with increasing Co content owing to the sp-d exchange interaction between Co and CdS atoms.

Share and Cite:

V. Huse, V. Mote and B. Dole, "The Crystallographic and Optical Studies on Cobalt Doped CdS Nanoparticles," World Journal of Condensed Matter Physics, Vol. 3 No. 1, 2013, pp. 46-49. doi: 10.4236/wjcmp.2013.31008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. A. Wolf, D. D. Awschalon, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Tregewr, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science, Vol. 294, No. 5546, 2001, pp. 1488-1495. doi:10.1126/science.1065389
[2] H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic,” Science, Vol. 281, No. 5369, 1998, pp. 951-956. doi:10.1126/science.281.5379.951
[3] M. Nirman and L. Brus, “Luminescence Photophysics in Semiconductor Nanocrystals,” Accounts of Chemical Research, Vol. 32, No. 5, 1999, pp. 407-414. doi:10.1021/ar9700320
[4] R. C. Ahoori, “Electrons in Artificial Atoms,” Nature, Vol. 379, No. 1, 1996, pp. 413-419. doi:10.1038/379413a0
[5] D. L. Klein, R. Roth, A. K. L. Lim and A. P. Alivisatos, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystals,” Nature, Vol. 389, No. 6652, 1997, pp. 699-701. doi:10.1038/39535
[6] V. Ruxandra and S. Antohe, “The Effect of the Electron Irradiation on the Electrical Properties of Thin Polycrystalline CdS Layers,” Journal of Applied Physics, Vol. 84, No. 2, 1998, pp. 727-733. doi:10.1063/1.368129
[7] V. L. Kolvin, M. C. Schlamp and A. P. Alivisatos, “LightEmitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer,” Nature, Vol. 370, No. 6488, 1994, pp. 354-357. doi:10.1038/370354a0
[8] N. Romeo, A. Bosio and A. Romeo, “An Innovative Process Suitable Toproducehigh-Efficiency CdTe/CdS ThinFilm Modules,” Solar Energy Materials Solar Cells, Vol. 94, No. 1, 2010, pp. 2-7. doi:10.1016/j.solmat.2009.06.001
[9] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, Vol. 271, No. 5251, 1996, pp. 933-937. doi:10.1126/science.271.5251.933
[10] S. Bachir, K Azuma, J. Kossanyi and P. Valat, “Photoluminescence of Polycrystalline Zinc Oxide Co-Activated with Trivalent Rare Earth Ions and Lithium. Insertion of Rare-Earth Ions into Zinc Oxide,” Journal of Luminescence, Vol. 75, No. 1, 1997, pp. 35-49. doi:10.1016/S0022-2313(97)00093-8
[11] S. Tiwari and S. Tiwari, “Development of CdS Based Stable Thin Film Photo Electrochemical Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 90, No. 11, 2006, pp. 1621-1628. doi:10.1016/j.solmat.2005.01.021
[12] C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” Journal of the American Chemical Society, Vol. 115, No. 19, 1993, pp. 8706-8715. doi:10.1021/ja00072a025
[13] X. Peng, J. Wickham and A. P. Alivisatos, “Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: ‘Focusing’ of Size Distributions,” Journal of the American Chemical Society, Vol. 120, No. 21, 1998, pp. 5343-5344. doi:10.1021/ja9805425
[14] H. Zhang, X. Fu, S. Niu, G. Sun and Q. Xin, “Luminescence Properties of Li+ Doped Nanosized SnO2:Eu,” Journal of Luminescence, Vol. 115, No. 1-2, 2005, pp. 7-12. doi:10.1016/j.jlumin.2005.02.008
[15] Y. Qian, K. Hara, H. Munekata and H. Kukimoto, “BlueEmitting Ac-Electroluminescent Cells Based on ZnS:Tm, Li Powder Phosphors,” Japanese Journal of Applied Physics, Vol. 34, No. 3B, 1995, pp. L368-L370. doi:10.1143/JJAP.34.L368
[16] J. C. Ronfard-Haret and J. Kossanyi, “Electroand Photoluminescence of the Tm3+ Ion in Tm3+and Li+-Doped ZnO Ceramics. Influence of the Sintering Temperature,” Chemical Physics, Vol. 241, No. 3, 1999, pp. 339-349. doi:10.1016/S0301-0104(98)00431-5
[17] V. D. Mote, V. R. Huse, K. M. Jadhav, B. N. Dole and S. S. Shah, “Synthesis and Structural Properties of Mn Doped ZnO Nanoparticles by Ceramic Route,” Bionano Frontiers, 2010, pp. 145-150.
[18] A. M. Abdeen, O. M. Hemeda, E. E. Assem, M. M. ElSehly, “Structural, Electrical and Transport Phenomena of Co Ferrite Substituted by Cd,” Journal of Magnetism and Magnetic Materials, Vol. 238, No. 1, 2002, pp. 75-83. doi:10.1016/S0304-8853(01)00465-6
[19] A. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review, Vol. 56, No. 10, 1939, pp. 978-982.
[20] P. Koidl, “Optical Absorption of Co2+ in ZnO,” Physical Review B, Vol. 15, No. 5, 1977, pp. 2493-2499. doi:10.1103/PhysRevB.15.2493
[21] M. Thambidurai, N. Muthukumarswami, D. Velauthapillai, S. Agilan and R. Balasundaraprabhu, “Structural, Optical and Electrical Properties Cobalt Doped CdS Quantum Dots,” Journal of Electronica Materials, Vol. 41, No. 4, 2012, pp. 665-672. doi:10.1007/s11664-012-1900-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.