Removal of Malachite Green Dye from Aqueous Solutions onto Microwave Assisted Zinc Chloride Chemical Activated Epicarp of Ricinus communis

Abstract

Competitive adsorption of malachite green (MG) in single and binary system on microwave activated epicarp of Ricinus communis (MRC) and microwave assisted zinc chloride activated epicarp of Ricinus communis (ZRC) were analyzed. The preparation of ZRC from Ricinus communis was investigated in this paper. Orthogonal array experimental design method was used to optimize the preparation of ZRC. Optimized parameters were radiation power of 100 W, radiation time of 4 min, concentration of zinc chloride of 30% by volume and impregnation time of 16 h, respectively. The MRC and ZRC were characterized by pHzpc, SEM-EDAX and FTIR analysis. The effect of the presence of one dye solution on the adsorption of the other dye solution was investigated in terms of equilibrium isotherm and adsorption yield. Experimental results indicated that the uptake capacities of one dye were reduced by the presence of the other dye. The adsorption equilibrium data fits the Langmuir model well and follows pseudo second-order kinetics for the bio-sorption process. Among MRC and ZRC, ZRC shows most adsorption ability than MRC in single and binary system.

Share and Cite:

M. Makeswari and T. Santhi, "Removal of Malachite Green Dye from Aqueous Solutions onto Microwave Assisted Zinc Chloride Chemical Activated Epicarp of Ricinus communis," Journal of Water Resource and Protection, Vol. 5 No. 2, 2013, pp. 222-238. doi: 10.4236/jwarp.2013.52023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. M. A. G. U. de Souza, L. C. Peruzzo and A. A. U. de Souza, “Numerical Study of the Adsorption of Dyes from Effluents,” Applied Mathematical Modelling, Vol. 32, No. 9, 2008, pp. 1711-1718. doi:10.1016/j.apm.2007.06.007
[2] K. V. Kumar, S. Sivanesan and V. Ramamurthi, “Adsorption of Malachite Green onto Pithopora sp., a Fresh Water Algal: Equilibrium and Kinetic Modeling,” Process Biochemistry, Vol. 40, No. 48, 2005, pp. 2865-2872. doi:10.1016/j.procbio.2005.01.007
[3] V. K. Gupta, A. Mittal, L. Krishnan and V. Gajbe, “Adsorption Kinetics and Column Operations for the Removal and Recovery of Malachite Green from Wastewater Using Bottom Ash,” Separation and Purification Technology, Vol. 40, No. 1, 2004, pp. 87-96. doi:10.1016/j.seppur.2004.01.008
[4] M.-S. Chiou and H.-Y. Li, “Equilibrium and Kinetic Modeling of Adsorption of Reactive Dyes on Cross-Linked chitosan Beads,” Journal of Hazardous Materials, Vol. 93, No. 2, 2002, pp. 233-248. doi:10.1016/S0304-3894(02)00030-4
[5] O. S. Bello, M. A. Ahmad and T. S. Tan, “Utilization of Cocoapod Husk for the Removal of Remazol Black B Reactive Dye from Aqueous Solutions: Kinetic, Equilibrium and Thermodynamic Studies,” Trends in Applied Sciences Research, Vol. 6, No. 8, 2011, pp. 794-812. doi:10.3923/tasr.2011.794.812
[6] B. H. Hameed, A. L. Ahmad and K. N. A. Latiff, “Adsorption of Basic Dye (Methylene Blue) onto Activated Carbon Prepared from Rattan Sawdust,” Dyes and Pigments, Vol. 75, No. 1, 2007, pp. 143-149. doi:10.1016/j.dyepig.2006.05.039
[7] U. Kumar and M. Bandyopadhyay, “Sorption of Cadmium from Aqueous Solution Using Pretreated Rice Husk,” Bioresource Technology, Vol. 97, No. 1, 2006, pp. 104-109. doi:10.1016/j.biortech.2005.02.027
[8] K. V. Kumar, “Optimum Sorption Isotherm by Linear and Nonlinear Methods for Malachite onto Lemon Peel,” Dyes and Pigments, Vol. 74, No. 3, 2007, pp. 595-597. doi:10.1016/j.dyepig.2006.03.026
[9] R. M. Gong, X. P. Zhang, H. J. Liu, Y. Z. Sun and B. R. Liu, “Uptake of Cationic Dyes from Aqueous Solution by Biosorption onto Granular Kohlrabi Peel,” Bioresource Technology, Vol. 98, No. 6, 2007, pp. 1319-1323. doi:10.1016/j.biortech.2006.04.034
[10] S. Senthilkumaar, P. R. Varadarajan, K. Porkodi and C. V. Subhuraam, “Adsorption of Methylene Blue onto Jute Fibre Carbon; Kinetics and Equilibrium Studies,” Journal of Colloid and Interface Science, Vol. 284, No. 1, 2005, pp. 78-82. doi:10.1016/j.jcis.2004.09.027
[11] I. A. W.Tan, L. Ahmad and B. H. Hameed, “Optimization of Preparation Conditions for Activated Carbons from Coconut Husk Using Response Surface Methodology,” Journal of Chemical Engineering, Vol. 137, No. 3, 2008, pp. 462-470. doi:10.1016/j.cej.2007.04.031
[12] J. Hayashi, A. Kazehaya, K. Muroyamo and A. P. Watkinson, “Preparation of Activated Carbon from Lignin by Chemical Activation,” Carbon, Vol. 38, No. 13, 2008, pp. 1873-1878. doi:10.1016/S0008-6223(00)00027-0
[13] M. M. Karim, A. K. Das and S. H. Lee, “Treatment of Colored Effluent of the Textile Industry in Bangladesh Using Zinc Chloride Treated Indigenous Activated Carbons,” Journal of Analtica Chimica Acta, Vol. 576, No. 1, 2006, pp. 37-42. doi:10.1016/j.aca.2006.01.079
[14] C. Almansa, M. Molina-Sabio and F. Rodruguez-Reinso, “Adsorption of Methane into ZnCl2-Activated Carbon Derived Discs,” Journal of Microporous and Mesporous Materials, Vol. 76, No. 1-3, 2004, pp. 185-191. doi:10.1016/j.micromeso.2004.08.010
[15] W. Li, L.-B. Zhang, J.-H. Peng, N. Li and X.-Y. Zhang, “Preparation of High Surface Area Activated Carbons from Tobacco Stems with K2CO3 Activation Using Microwave Radiation,” Journal of Industrial Crops and Products, Vol. 27, No. 3, 2008, pp. 341-347. doi:10.1016/j.indcrop.2007.11.011
[16] C. O. Ania, J. B. Parra, J. A. Menendez and J. J. Pis, “Effect of Microwave and Conventional Regeneration on the Microporous and Mesporous Network on the Adsorptive Capacity of Activated Carbons,” Journal of Microporous and Mesoporus Materials, Vol. 63, No. 1-2, 2005, pp. 7-15. doi:10.1016/j.micromeso.2005.06.013
[17] J. M. V. Nabais, P. J. M. Carrot, M. M. L. R. Carrott and J. A. Menendez, “Preparation and Modification of Activated Carbon Fibres by Microwave Heating,” Carbon, Vol. 42, No. 7, 2004, pp. 1315-1320. doi:10.1016/j.carbon.2004.01.033
[18] D. A. Jones, T. P. Leyveld, S. D. Mavrofidis, S. W. Kingman and N. J. Miles, “Microwave Heating Applications in Environmental Engineering: A Review,” Resources, Conservation and Recycling, Vol. 34, No. 2, 2002, pp. 75-90. doi:10.1016/S0921-3449(01)00088-X
[19] T. Santhi, S. Manonmani and T.Smitha, “The Removal of Malachite Green from Aqueous Solution by Activated Carbon Prepared from the Epicarp of Ricinus Communis by Adsorption,” Journal of Hazardous Materials, Vol. 179, No. 1-3, 2010, pp. 178-186. doi:10.1016/j.jhazmat.2010.02.076
[20] A. Kumar, B. Prasad and I. M. Mishra, “Adsorptive Removal of Acryloinitrile by Commercial Grade Activated Carbon: Kinetics, Equilibrium and Thermodynamics,” Journal of Hazardous Materials, Vol. 152, No. 2, 2008, pp. 589-600. doi:10.1016/j.jhazmat.2007.07.048
[21] H. P. Boehm, “Surface Oxides on Carbon and Their Analysis: A Critical Assessment,” Carbon, Vol. 40, No. 2, 2002, pp. 145-149. doi:10.1016/S0008-6223(01)00165-8
[22] P. Janos, H. Buchtova and M. Ryznarova, “Sorption of Dye from Aqueous Solution onto Fly Ash,” Water Research, Vol. 37, No. 20, 2003, pp. 4938-4944. doi:10.1016/j.watres.2003.08.011
[23] S. D. Khattri and M.K. Singh, “Removal of Malachite Green from Dye Wastewater Using Neem Sawdust by Adsorption,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 1089-1094. doi:10.1016/j.jhazmat.2009.01.101
[24] B. K. Hamad, A. M. Noor, A. R. Afida and M. N. M. Asri, “High Removal of 4-Chloroguaiacol by High Surface Area of Oil Palm Shell-Activated Carbon Activated with NaOH from Aqueous Solution,” Desalination, Vol. 257, No. 1-3, 2010, pp. 1-7. doi:10.1016/j.desal.2010.03.007
[25] A. Reffas, V. Bernardet, B. David, L. Reinerts, M. B. Lehocine, M. D. Batisse and L. Duciaux, “Carbon Prepared from Coffee Grounds by H3PO4 Activation: Characterization and Adsorption of Methylene Blue and Nylosan Red N-2RBL,” Journal of Hazardous Materials, Vol. 175, No. 1-3, 2010, pp. 779-788. doi:10.1016/j.jhazmat.2009.10.076
[26] V. Boonamnuayvitaya, S. Sae-ung and W. Tanthapani-chakoonc, “Preparation of Activated Carbons from Coffee Residue for the Adsorption of Formaldehyde,” Separation and Purification Technology, Vol. 42, No. 2, 2005, pp. 159-168. doi:10.1016/j.seppur.2004.07.007
[27] H. Deng, G. L. Zhang, X. L. Xu, G. H. Tai and J. L. Dai, “Optimization of Preparation of Activated Carbon from Cotton Stalk by Microwave Assisted Phosphoric Acid-Chemical Activation,” Journal of Hazardous Materials, Vol. 182, No. 1-3, 2010, pp. 217-224. doi:10.1016/j.jhazmat.2010.06.018
[28] A. E. Nemr, O. Abdelwahab, E. A. Sikaily and A. Khaled, “A Removal of Direct Blue-86 from Aqueous Solution by New Activated Carbon Developed from Orange Peel,” Journal of Hazardous Materials, Vol. 161, 2009, pp. 102-110.
[29] V. K. Gupta, I. Ali, Subhas and D. Mohan, “Equilibrium Uptake and Sorption Dynamics for the Removal of a Basic Dye (Basic Red) Using Low-Cost Adsorbents,” Journal of Colloid and Interface Science, Vol. 265, No. 2, 2003, pp. 257-264. doi:10.1016/S0021-9797(03)00467-3
[30] R. Ahmad and R. Kumar, “Adsorption Studies of Hazardous Malachite Green onto Treated Ginger Waste,” Journal of Environmental Management, Vol. 91, No. 4, 2010, pp. 1032-1038. doi:10.1016/j.jenvman.2009.12.016
[31] B. H. Hameed, “Spent Tea Leaves: A Non-Conventional and Low-Cost Adsorbent for Removal of Basic Dye from Aqueous Solutions,” Journal of Hazardous Materials, Vol. 161, No. 2-3, 2009, pp. 753-759. doi:10.1016/j.jhazmat.2008.04.019
[32] I. D. Mall, V. C. Srivastava, N. K. Agarwal and I. M. Mishra, “Adsorptive Removal of Malachite Green Dye from Aqueous Solution by Bagasse Fly Ash and Activated Carbon-Kinetic Study and Equilibrium Isotherm Analyses,” Colloids and Surface Area: Physicochemical and Engineering Aspects, Vol. 264, No. 1-3, 2005, pp. 17-28. doi:10.1016/j.colsurfa.2005.03.027
[33] B. H. Hameed, D. K. Mahmoud and A. L. Ahmad, “Sorption of Basic Dye from Aqueous Solution by Pomelo (Citrus grandis) Peel in a Batch System,” Colloids and Surface Area: Physicochemical and Engineering Aspects, Vol. 316, No. 1-3, 2008, pp. 78-84. doi:10.1016/j.colsurfa.2007.08.033
[34] E. S. Z. E. Ashtouskhy, “Loofa egyptiaca as a Novel Adsorbent for the Removal of Direct Blue Dye from Aqueous Solution,” Journal of Environmental Management, Vol. 90, No. 6, 2009, pp. 2755-2761. doi:10.1016/j.jenvman.2009.03.005
[35] I. Langmuir, Journal of the American Chemical Society, Vol. 40, 1918, p. 1361.
[36] M. Dogan, M. Alkan and Y. Onganer, “Adsorption of Methylene Blue from Aqueous Solution onto Perlite,” Water, Air and Soil Pollution, Vol. 120, No. 3-4, 2000, pp. 229-249. doi:10.1023/A:1005297724304
[37] I. Langmuir, “The Constitution and Fundamental Properties of Solids and Liquids,” Journal of the American Chemical Society, Vol. 38, No. 11, 1916, pp. 2221-2295. doi:10.1021/ja02268a002
[38] D. G. Kinniburgh, “General Purpose Adsorption Isotherms,” Environmental Science & Technology, Vol. 20, No. 9, 1986, pp. 895-904. doi:10.1021/es00151a008
[39] E. Longhinotti, F. Pozza, L. Furlan, M. D. N. D. Sanchez, M. Klug, M. C. M. Laranjeira and V. T. Favere, “Adsorption of Anionic Dyes on the Biopolymer Chitin,” Journal of the Brazilian Chemical Society, Vol. 9, No. 5, 1998, pp. 435-440. doi:10.1590/S0103-50531998000500005
[40] H. Freundlich, “User Die Adsorption in Losungen (Adsorption in Solution),” The Journal of Physical Chemistry, Vol. 57, 1906, pp. 384-470.
[41] B. Acemioglu, “Adsorption of Congo Red from Aqueous Solution onto Calcium-Rich Fly Ash,” Journal of Colloid and Interface Science, Vol. 274, No. 2, 2004, pp. 371-379. doi:10.1016/j.jcis.2004.03.019
[42] J. P. Hobson, “Physical Adsorption Isotherms Extending from Ultrahigh Vacuum to Vapor Pressure,” The Journal of Physical Chemistry, Vol. 73, No. 8, 1969, pp. 2720-2727. doi:10.1021/j100842a045
[43] M. J. Temkin and V. Pyzhev, “Recent Modifications to Langmuir Isotherms,” Acta Physiochim, URSS 12, 1940, pp. 217-222.
[44] K. Y. Foo and B. H. Hameed, “Insights into the Modeling of Adsorption Isotherm Systems,” Chemical Engineering Journal, Vol.156, No. 1, 2010, pp. 2-10. doi:10.1016/j.cej.2009.09.013
[45] A. C. Duran and I. Flores, “Evaluation of Lead (II) Immobilization by a Vermicompost Using Adsorption Isotherms and IR Spectroscopy,” Bioresource Technology, Vol. 100, No. 4, 2009, pp. 1691-1694. doi:10.1016/j.biortech.2008.09.013
[46] G. Crini, H. N. Peindy, F. Gimbert and C. Robert, “Removal of C.I. Basic Green 4 (Malachite Green) from Aqueous Solutions by Adsorption Using Cyclodextrin-Based Adsorbent: Kinetic and Equilibrium Studies,” Separation and Purification Technology, Vol. 53, No. 1, 2007, pp. 97-110. doi:10.1016/j.seppur.2006.06.018
[47] M. Ozacar and I. A. Sengil, “A Kinetic Study of Metal Complex Dye Sorption onto Pine Sawdust,” Process Biochemistry, Vol. 40, No. 2, 2005, pp. 565-572. doi:10.1016/j.procbio.2004.01.032
[48] G. H. Sonawane and V. S. Shrivastava, “Kinetics of Decolourization of Malachite Green from Aqueous Medium by Maize Cob (Zea maize): An Agricultural Solid Waste,” Desalination, Vol. 247, No. 1-3, 2009, pp. 430-441. doi:10.1016/j.desal.2009.01.006
[49] W. J. Weber and J. C. Morris, “Kinetics of Adsorption on Carbon from Solution,” Journal of Sanity Engineering Division of the American Society of Civil Engineering, Vol. 89, 1963, pp. 31-59.
[50] Y. S. Ho, “Removal of Copper Ions from Aqueous Solution by Tree Fern,” Water Research, Vol. 37, No. 10, 2003, pp. 2323-2330. doi:10.1016/S0043-1354(03)00002-2
[51] S. H. Chen, J. Zhang, C. G. Zhang, Q. Y. yue, Y. Li and C. Li, “Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites australis,” Desalination, Vol. 252, No. 1-3, 2010, pp. 149-156. doi:10.1016/j.desal.2009.10.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.