A model System for Validation of PET Radiopharmaceuticals: Focusing on Tumor Microenvironment

Abstract

Positron emission tomography (PET) imaging has emerged as an important clinical tool for cancer management, and specifically targeted radiopharmaceuticals play critical roles on PET molecular imaging. Solid cancers have highly complex and heterogeneous microenvironment, this review focused on those microenvironmental factors such as hypoxia, proliferation and perfusion and, accordingly, a novel test system for validation of current and novel targeted imaging radiopharmaceuticals. In this review, we have introduced the establishment of cancer and metastases models in nude mice, visualization of microenvironmental components of hypoxia, proliferation, perfusion, stroma and necrosis in cancers and metastases for establishing the microenvironment based model system, and validation of several radio- pharmaceuticals such as 18F-fluoro-2-deoxyglucose (18F-FDG) 18F-fluorothymidine (18F-FLT), 18F-misonidazole (18F- FMISO) using the system. We found that 18F-FLT accumulates in proliferating cancer cells, while 18F-FMISO and 18F-FDG mostly accumulate in hypoxic and non-proliferative cancer cells, 18F-FDG shares roughly similar intratumoral distribution pattern with 18F-FMISO and IAZGP, but mutually excludes 18F-FLT. This model system validated current tracers for imaging glucose metabolism, hypoxia and proliferation in cancer and metastases, therefore, can be used for novel targeted radiopharmaceuticals validation.

Share and Cite:

X. Li, H. Jiang, Y. Ma, T. Huang, X. Yin, A. Civelek and B. Shen, "A model System for Validation of PET Radiopharmaceuticals: Focusing on Tumor Microenvironment," International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, Vol. 2 No. 1, 2013, pp. 19-29. doi: 10.4236/ijmpcero.2013.21004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Zander, M. Scheffler, L. Nogova, C. Kobe, W. EngelRiedel, M. Hellmich, I. Papachristou, K. Toepelt, A. Draube, L. Heukamp, R. Buettner, Y. D. Ko, R. T. Ullrich, E. Smit, R. Boellaard, A. A. Lammertsma, M. Hallek, A. H. Jacobs, A. Schlesinger, K. Schulte, S. Querings, E. Stoelben, B. Neumaier, R. K. Thomas, M. Dietlein and J. Wolf, “Early Prediction of Nonprogression in Advanced Non-Small-Cell Lung Cancer Treated with Erlotinib by Using [18F] Fluorodeoxyglucose and [18F]Fluorothymidine Positron Emission Tomography,” Journal of Clinical Oncology, Vol. 29, No. 13, 2011, pp. 1701-1708. doi:10.1200/JCO.2010.32.4939
[2] V. Frings, A. J. de Langen, E. F. Smit, F. H. van Velden, O. S. Hoekstra, H. van Tinteren and R. Boellaard, “Repeatability of Metabolically Active Volume Measurements with 18F-FDG and 18F-FLT PET in Non-Small Cell Lung Cancer,” Journal of Nuclear Medicine, Vol. 51, No. 12, 2010, pp. 1870-1877. doi:10.2967/jnumed.110.077255
[3] P. Vera, P. Bohn, A. Edet-Sanson, A. Salles, S. Hapdey, I. Gardin, J. F. Ménard, R. Modzelewski, L. Thiberville and B. Dubray, “Simultaneous Positron Emission Tomography (PET) Assessment of Metabolism with 18F-Fluoro-2Deoxy-D-Glucose (FDG), Proliferation with 18F-FluoroThymidine (FLT), and Hypoxia with 18Fluoro-Misonidazole (F-Miso) before and during Radiotherapy in Patients with Non-Small-Cell Lung Cancer (NSCLC): A Pilot Study,” Radiotherapy and Oncology, Vol. 98, No. 1, 2011, pp. 109-116. doi:10.1016/j.radonc.2010.10.011
[4] W. Yang, Y. Zhang, Z.Fu, J. Yu, X. Sun, D. Mu and A. Han, “Imaging of Proliferation with 18F-FLT PET/CT Versus 18F-FDG PET/CT in Non-Small-Cell Lung Cancer,” European Journal of Nuclear Medicine and Molecular, Vol. 37, No. 7, 2010, pp. 1291-1299. doi:10.1007/s00259-010-1412-6
[5] Y. Yamamoto, Y. Nishiyama, S. Ishikawa, J Nakano, S. S. Chang, S. Bandoh, N. Kanaji, R. Haba, Y. Kushida and M. Ohkawa, “Correlation of 18F-FLT and 18F-FDG Uptake on PET with Ki-67 Immunohistochemistry in NonSmall Cell Lung Cancer,”European Journal of Nuclear Medicine and Molecular , Vol. 34, No. 10, 2007, pp. 1610-1616. doi:10.1007/s00259-007-0449-7
[6] S. A. Nehmeh, N. Y. Lee, H. Schr?der, O. Squire, P. B. Zanzonico, Y. E. Erdi, C. Greco, G. Mageras, H. S. Pham, S. M. Larson, C. C. Ling and J. L. Humm, “Reproducibility of Intratumor Distribution of 18F-Fluoromisonidazole in Head and Neck Cancer,” International Journal of Radiation Oncology, Biology, Physics, Vol. 70, No. 1, 2008, pp. 235-242. doi:10.1016/j.ijrobp.2007.08.036
[7] A. K. Buck, G. Halter, H. Schirrmeister, J. Kotzerke, I. Wurziger, G. Glatting, T. Mattfeldt, B. Neumaier, S. N. Reske and M. Hetzel, “Imaging Proliferation in Lung Tumors with PET: 18F-FLT versus 18F-FDG,” Journal of Nuclear Medicine, Vol. 44, No. 9, 2003, pp. 1426-1431.
[8] X. F. Li, Y. Ma, X Sun, J. L. Humm, C. C. Ling and J. A. O’Donoghue, “High 18F-FDG Uptake in Microscopic Peritoneal Tumors Requires Physiologic Hypoxia,” Journal of Nuclear Medicine, Vol. 51, No. 4, 2010, pp. 632-638. doi:10.2967/jnumed.109.071233
[9] P. Burgman, J. A. O’Donoghue, J. L. Humm and C. C. Ling, “Hypoxia-Induced Increase in FDG Uptake in MCF7 Cells,” Journal of Nuclear Medicine, Vol. 42, No. 1, 2001, pp. 170-175.
[10] A. Pugachev, S. Ruan, S. Carlin, S. M. Larson, J. Campa, C. C. Ling and J. L. Humm, “Dependence of FDG Uptake on Tumor Microenvironment,” International Journal of Radiation Oncology, Biology, Physics, Vol. 62, No. 2, 2005, pp. 545-553. doi:10.1016/j.ijrobp.2005.02.009
[11] T. Tanaka, T. Furukawa, S. Fujieda, S. Kasamatsu, Y. Yonekura and Y. Fujibayashi, “Double-Tracer Autoradiography with Cu-ATSM/FDG and Immunohistochemical Interpretation in Four Different Mouse Implanted Tumor Models,” Nuclear Medicine and Biology, Vol. 33, No. 6, 2006, pp. 743-750. doi:10.1016/j.nucmedbio.2006.05.005
[12] P. Zanzonico, J. Campa, D. Polycarpe-Holman, G. Forster, R. Finn, S. Larson, J. Humm and C. Ling, “Ani-malSpecific Positioning Molds for Registration of Repeat Imaging Studies: Comparative Micropet Imaging of F18Labeled Fluoro-Deoxyglucose and Fluoro-Misonidazole in Rodent Tumors,” Nuclear Medicine and Biology, Vol. 33, No. 1, 2006, pp. 65-70. doi:10.1016/j.nucmedbio.2005.07.011
[13] C. S. Dence, D. E. Ponde, M. J. Welch and J. S. Lewis, “Autoradiographic and Small-Animal PET Comparisons between 18F-FMISO, 18FFDG, 18F-FLT and the Hypoxic Selective 64Cu-ATSM in a Rodent Model of Cancer,” Nuclear Medicine and Biology, Vol. 35, No. 6, 2008, pp. 713-720. doi:10.1016/j.nucmedbio.2008.06.001
[14] E. G. Troost, P. Laverman, M. E. Philippens, J. Lok, A. J. van der Kogel, W. J. Oyen, O. C. Boerman, J. H. Kaanders and J. Bussink, “Correlation of [18F]FMISO Autoradiography and Pimonidazole Immunohistochemistry in Human Head and Neck Carcinoma Xenografts,” European Journal of Nuclear Medicine and Molecular, Vol. 35, No. 10, 2008, pp. 1803-1811. doi:10.1007/s00259-008-0772-7
[15] R. H. Thomlinson and L. H. Gray, “The Histological Structure of Some Human Lung Cancers and the Possible Implications for Radiotherapy,” British Journal of Cancer, Vol. 9, No. 4, 1955, pp. 539-549. doi:10.1038/bjc.1955.55
[16] E. E. Graves, A. Maity and Q. T. Le, “the Tumor Microenvironment in Non-Small Cell Lung Cancer,” Seminars in Radiation Oncology, Vol. 20, No. 3, 2010, pp. 156-163. doi:10.1016/j.semradonc.2010.01.003
[17] D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell, Vol. 144, No. 5, 201, pp. 646-674.
[18] T. Huang, A. C. Civelek, J. Li, H. Jiang, C. K. Ng, G. C. Postel, B. Shen and X. F. Li, “Tumor MicroenvironmentDependent 18F-FDG, 18F-Fluorothymidine, and 18F-Misonidazole Uptake: A Pilot Study in Mouse Models of Human Non-Small Cell Lung Cancer,” Journal of Nuclear Medicine, Vol. 53,No. 8, 2012, pp. 1262-1268. doi:10.2967/jnumed.111.098087
[19] X. F. Li, S. Carlin, M. Urano, J. Russell, C. C. Ling and J. A. O’Donoghue, “Visualization of Hypoxia in Microscopic Tumors by Immunofluorescent Microscopy,” Cancer Research, Vol. 67, No. 16, 2007, pp. 7646-7653. doi:10.1158/0008-5472.CAN-06-4353
[20] A. S. Kennedy, J. A. Raleigh, G. M. Perez, D. P. Calkins, D. E. Thrall, D. B. Novotny and M. A. Varia, “Proliferation and Hypoxia in Human Squamous Cell Carcinoma of the Cervix: First Report of Combined Immunohistochemical Assays,” International Journal of Radiation Oncology, Biology, Physics, Vol. 37, No. 4,1997, pp. 897-905. doi:10.1016/S0360-3016(96)00539-1
[21] R. E. Durand and J. A. Raleigh, “Identification of Nonproliferating But Viable Hypoxic Tumor Cells in Vivo,” Cancer Research, Vol. 58, No. 16, 1998, pp. 3547-3550.
[22] X. F. Li, P Zanzonico, C. C. Ling and J. O’Donoghue, “Visualization of Experimental Lung and Bone Metastases in Live Nude Mice by X-Ray Micro-Computed Tomography,” Technology in Cancer Research and Treatment , Vol. 5, No. 2, 2006, pp. 147-155.
[23] M. D. Cameron, E. E. Schmidt, N. Kerkvliet, K. V. Nadkarni, V. L. Morris, A. C. Groom, A. F. Chambers and I. C. MacDonald, “Temporal Progression of Metastasis in Lung: Cell Survival, Dormancy, and Location Dependence of Metastatic Inefficiency,” Cancer Research, Vol. 60, No. 9, 2000, pp. 2541-2546.
[24] Y. Maniwa, M. Okada, N. Ishii and K. Kiyooka, “Vascular Endothelial Growth Factor Increased by Pulmonary Surgery Accelerates the Growth of Micrometastases in Metastatic Lung Cancer,” Chest, Vol. 114, No. 6, 1998, pp. 1668-1675. doi:10.1378/chest.114.6.1668
[25] T. Hiraga, S. Kizaka-Kondoh, K. Hirota, M. Hiraoka and T. Yoneda, “Hypoxia and Hypoxia-Inducible Factor-1 Expression Enhance Osteolytic Bone Metastases of Breast Cancer,” Cancer Research, Vol. 67, No. 9, 2007, pp. 4157-4563. doi:10.1158/0008-5472.CAN-06-2355
[26] X. F. Li, S. Kinuya, K. Yokoyama, K. Koshida, H. Mori, K. Shiba, N. Watanabe, N. Shuke, T. Michigishi and N. Tonami, “Benefits of Combined Radioimmunotherapy and Anti-Angiogenic Therapy in a Liver Metastasis Model of Human Colon Cancer Cells,”European Journal of Nuclear Medicine and Molecular, Vol. 29, No. 12, 2002, pp. 1669-1674. doi:10.1007/s00259-002-0997-9
[27] X. F. Li, X. Sun, Y. Ma, M. Suehiro, M. Zhang, J. Russell, J. L. Humm, C. C. Ling and J. A. O’Donoghue, “Detection of Hypoxia in Microscopic Tumors Using 131ILabeled Iodo-Azomycin Galactopyranoside (131I-IAZGP) Digital Autoradiography,”European Journal of Nuclear Medicine and Molecular, Vol. 37, No. 2, 2010, pp. 339348. doi:10.1007/s00259-009-1310-y
[28] X. F. Li and J. A. O’Donoghue, “Hypoxia in Microscopic Tumors,” Cancer Letters, Vol. 264, No. 2, 2008, pp. 172180. doi:10.1016/j.canlet.2008.02.037
[29] A. S. Ljungkvist, J. Bussink, J. H. Kaanders, P. F. Rijken, A. C. Begg, J. A. Raleigh and A. J. van der Kogel, “Hypoxic Cell Turnover in Different Solid Tumor Lines,” International Journal of Radiation Oncology, Biology, Physics, Vol. 62, No. 4, 2005, pp. 1157-168. doi:10.1016/j.ijrobp.2005.03.049
[30] J. A. Raleigh, S. C. Chou, G. E. Arteel and M. R. Horsman, “Comparisons among Pimonidazole Binding, Oxygen Electrode Measurements, and Radiation Response in C3H Mouse Tumors,” Radiation Research, Vol. 151, No. 5, 1999, pp. 580-589. doi:10.2307/3580034
[31] J. H. Kaanders, K. I. Wijffels, H. A. Marres, A. S. Ljungkvist, L. A. Pop, F. J. van den Hoogen, P. C. de Wilde, J. Bussink, J. A. Raleigh and A. J. van der Kogel, “Pimonidazole Binding and Tumor Vascularity Predict for Treatment Outcome in Head and Neck Cancer,” Cancer Research, Vol. 62, No. 23, 2002, pp. 7066-7074.
[32] J. A. Raleigh, D. P. Calkins-Adams, L. H. Rinker, C. A. Ballenger, M. C. Weissler, W. C. Fowler Jr., D. B. Novotny and M. A. Varia, “Hypoxia and Vascular Endothelial Growth Factor Expression in Human Squamous Cell Carcinomas Using Pimonidazole as a Hypoxia Marker,” Cancer Research, Vol. 58, No. 17, 1998, pp. 3765-3768.
[33] A. S. Ljungkvist, J. Bussink, P. F. Rijken, J. A. Raleigh, J. Denekamp and A. J. Van Der Kogel, “Changes in Tumor Hypoxia Measured with a Double Hypoxic Marker Technique,” International Journal of Radiation Oncology, Biology, Physics, Vol. 48, No. 5, 2000, pp. 1529-1538. doi:10.1016/S0360-3016(00)00787-2
[34] J. A. O’Donoghue, P. Zanzonico, A. Pugachev, B. Wen, P. Smith-Jones, S. Cai, E. Burnazi, R. D. Finn, P. Burgman, S. Ruan, J. S. Lewis, M. J. Welch, C. C. Ling and J. L. Humm, “Assessment of Regional Tumor Hypoxia Using 18F-Fluoromisonidazole and 64Cu(II)-Diacetyl-Bis (N4-Methylthiosemicarbazone) Positron Emission Tomography: Comparative Study Featuring Micropet Imaging, Po2 Probe Measurement, Autoradiography, and Fluorescent Microscopy in the R3327-AT and FaDu Rat Tumor Models,” International Journal of Radiation Oncology, Biology, Physics, Vol. 61, No. 5, 2005, pp. 1493-1502. doi:10.1016/j.ijrobp.2004.12.057
[35] S. Ben-Haim and P. Ell, “18F-FDG PET and PET/CT in the Evaluation of Cancer Treatment Response,” Journal of Nuclear Medicine, Vol. 50, No. 1, 2009, pp. 88-99. doi:10.2967/jnumed.108.054205
[36] R. A. Dierckx and C. Van de Wiele, “FDG Uptake, a Surrogate of Tumour Hypoxia?” European Journal of Nuclear Medicine and Molecular, Vol. 35, No. 8, 2008, pp. 1544-1549. doi:10.1007/s00259-008-0758-5
[37] G. L. Semenza, “Targeting HIF-1 for Cancer Therapy,” Nature Reviews Cancer, Vol. 3, No. 10, 2003, pp. 721732. doi:10.1038/nrc1187
[38] L. Bentzen, S. Keiding, M. R. Horsman, L. Falborg, S. B. Hansen and J. Overgaard, “Feasibility of Detecting Hypoxia in Experimental Mouse Tumours with 18F-Fluorinated Tracers and Positron Emission Tomography—A Study Evaluating [18F]Fluoro-2-Deoxy-D-Glucose,” Acta Oncologica, Vol. 39, No. 35, 2000, pp. 629-637. doi:10.1080/028418600750013320
[39] L. Dubois, W. Landuyt, K. Haustermans, P. Dupont, G. Bormans, P. Vermaelen, E. Verbeken and L. Mortelmans, “Evaluation of Hypoxia in an Experimental Rat Tumour Model by [18F]Fluoromisonidazole PET and Immunohistochemistry,” British Journal of Cancer, Vol. 91, No. 11, 2004, pp. 1947-1954. doi:10.1038/sj.bjc.6602219
[40] F. He, X. Deng, B. Wen, Y. L iu, X. Sun, L. Xing, A. Minami, Y. Huang, Q. Chen, P. B. Zanzonico, C. C. Ling and G. C. Li, “Noninvasive Molecular Imaging of Hypoxia in Human Xenografts: Comparing Hypoxia-Induced Gene Expression with Endogenous and Exogenous Hypoxia Markers,” Cancer Resserch, Vol. 68, No. 20, 2008, pp. 8597-8606. doi:10.1158/0008-5472.CAN-08-0677
[41] R. V. Iyer, E. L Engelhardt, C. C. Stobbe, R. F. Schneider and J. D. Chapman, “Preclinical Assessment of Hypoxic Marker Specificity and Sensitivity,” International Journal of Radiation Oncology, Biology, Physics, Vol. 42, No. 42, 1998, pp. 741-745. doi:10.1016/S0360-3016(98)00315-0
[42] P. Zanzonico, J. O’Donoghue, J. D. Chapman, R. Schneider, S. Cai, S. Larson, B. Wen, Y. Chen, R. Finn, S. Ruan, L. Gerweck, J. Humm and C. Ling, “Iodine-124-Labeled Iodo-Azomycin-Galactoside Imaging of Tumor Hypoxia in Mice with Serial Micropet Scanning,” European Journal of Nuclear Medicine and Molecular, Vol. 31, No. 1, 2004, pp. 117-128. doi:10.1007/s00259-003-1322-y
[43] C. C. Riedl, P. Brader, P. B. Zanzonico, Y. S. Chun, Y. Woo, P. Singh, S. Carlin, B. Wen, C. C. Ling, H. Hricak and Y. Fong, “Imaging Hypoxia in Orthotopic Rat Liver Tumors with Iodine 124-Labeled Iodoazomycin Galactopyranoside PET,” Radiology, Vol. 248, No. 2, 2008, pp. 561-570. doi:10.1148/radiol.2482071421
[44] K. Wang, E. Yorke, S. A. Nehmeh, J. L. Humm and C. C. Ling, “Modeling Acute and Chronic Hypoxia Using Serial Images of 18F-FMISO PET,” Medical Physics, Vol. 36, No. 10, 2009, pp. 4400-4408. doi:10.1118/1.3213092

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.