ERβ interacting protein ERAP 140 shows age dependent alteration in its interaction and expression in male mouse brain

Abstract

Estrogen mediates multiple functions in the brain through the interaction of estrogen receptor (ER)α and ERβ with a host of nuclear proteins that regulate specific gene transcription. We have identified ERAP 140, AIB 1, Trk A, Src, pCREB and CREB as ERβ interacting proteins in the mouse brain. Earlier we showed that the interaction of ERβ with ERAP 140 decreased whereas its expression increased with aging in the brain of female mice. Here we report that the pattern of interaction and expression is different in male mice as compared to females. The interaction of ERAP 140 with ERβ decreased in adult male mouse brain as compared to young and remained almost similar in old whereas its expression was higher in adult than young and old, which were almost similar. Further in silico secondary structure analysis by self-optimized prediction method alignment (SOPMA) and PSIPRED revealed that ERβ interacting proteins were rich in alpha helices and coils. Such findings might help to design ER modulators which can regulate specific functions of estrogen in the brain during aging and degenerative diseases.

Share and Cite:

Paramanik, V. and Thakur, M. (2013) ERβ interacting protein ERAP 140 shows age dependent alteration in its interaction and expression in male mouse brain. World Journal of Neuroscience, 3, 1-9. doi: 10.4236/wjns.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Koehler, K.F., Helguero, L.A., Haldosén, L.A., Warner, M. and Gustafsson, J.A. (2005) Reflections on the discovery and significance of estrogen receptor β. Endocrine Reviews, 26, 465-478. doi:10.1210/er.2004-0027
[2] Nagler, J.J., Cavileer, T., Sullivan, J., Cyr, D.G. and Rex-road III, C. (2007) The complete nuclear estrogen recaptor family in the rainbow trout: Discovery of the novel ERα2 and both ERβ isoforms. Gene, 392, 164-173. doi:10.1016/j.gene.2006.12.030
[3] Sugiyama, N., Barros, R.P.A., Warner, M., Gustafsson, J.A. (2010) ERβ: Recent understanding of estrogen signaling. Trends in Endocrinology and Metabolism, 21, 545-552. doi:10.1016/j.tem.2010.05.001
[4] Beato, M. and Klug, J. (2000) Steroid hormone receptors: An update. Human Reproduction Update, 6, 225-236. doi:10.1093/humupd/6.3.225
[5] Mckenna, N.J. and O’Malley, B.W. (2002) Combinatorial control of gene expression by nuclear receptors and co-regulators. Cell, 108, 465-474. doi:10.1016/S0092-8674(02)00641-4
[6] Edwards, D.P. (2005) Regulation of signal transduction pathways by estrogen and progesterone. Annual Review of Physiology, 67, 335-376.
[7] Lonard, D.M. and O’Malley, B.W. (2008) SRC-3 transcription-coupled activation, degradation and the ubiquitin clock. Science Signaling, 1, e16.
[8] Thakur, M.K. and Paramanik, V. (2009) Role of steroid hormone coregulators in health and disease. Hormone Research, 71, 194-200. doi:10.1159/000201107
[9] Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.R. and Chambon, P. (1987) Functional domains of the human estrogen receptor. Cell, 51, 941-951. doi:10.1016/0092-8674(87)90581-2
[10] Smirnov, A.N. (2002) Review: Nuclear receptors: Nomenclatute, ligands, mechanisms of their effects on gene expression. Biochemistry (Moscow), 67, 957-977. doi:10.1023/A:1020545200302
[11] Thakur, M.K. and Sharma, P.K. (2006) Aging of brain: Role of estrogen. Neurochemical Research, 31, 1389-1398. doi:10.1007/s11064-006-9191-y
[12] Harding, J.J. (1972) Conformational changes in human lens proteins in cataract. Biochemistry Journal, 129, 97-100.
[13] Paramanik, V. and Thakur, M.K. (2010) Interaction of estrogen receptor associated protein (ERAP) 140 with ERβ decreases but its expression increases in aging mouse cerebral cortex. Cellular and Molecular Neurobiology, 30, 961-966. doi:10.1007/s10571-010-9526-8
[14] Paramanik, V. and Thakur, M.K. (2011) AIB1 shows variation in interaction with ERβTAD and expression as a function of age in mouse brain. Biogerontology, 12, 321-328. doi:10.1007/s10522-011-9330-y
[15] Thakur, M.K. and Paramanik, V. (2012) Expression of Trk A and Src and their interaction with ERβ ligand binding domain show age and sex dependent alteration in mouse brain. Neurochemical Research, 37, 448-453. doi:10.1007/s11064-011-0631-y
[16] Paramanik, V. and Thakur, M.K. (2012) Estrogen recaptor β and its domains interact with casein kinase 2, phosphokinase C and N-myristoylation sites of mitochondrial and nuclear proteins in mouse brain. The Journal of Biological Chemistry, 287, 22305-22316. doi:10.1074/jbc.M112.351262
[17] Greiner, E.F., Kirfel, J., Greschik, H., Huang, D., Becker, P., Kapfhammer, J.P. and Schüle, R. (2000) Differential ligand-dependent protein-protein interactions between nuclear receptors and a neuronal-specific cofactor. Proceeding of the National Academy of Sciences, 97, 7160-7165. doi:10.1073/pnas.97.13.7160
[18] Shao, W., Halachmi, S. and Brown, M. (2002) ERAP140, a conserved tissue-specific nuclear receptor coactivator. Molecular and Cellular Biology, 22, 3358-3372. doi:10.1128/MCB.22.10.3358-3372.2002
[19] Voegel, J.J., Heine, M.J., Zechel, C., Chambon, P. and Gronemeyer, H. (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO Journal, 15, 3667-3675.
[20] Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan, X.Y., Sauter, G., Kallioniemi, O.P., Trent, J.M. and Meltzer, P.S. (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science, 277, 965-968. doi:10.1126/science.277.5328.965
[21] Suen C.S., Berrodin, T.J., Mastroeni, R., Cheskis B.J., Lyttle, C.R. and Frail, D.E. (1998) A transcriptional co-activator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. The Journal of Biological Chemistry, 273, 27645-27653. doi:10.1074/jbc.273.42.27645
[22] Yan, J., Yu, C.T., Ozen, M., Ittmann, M., Tsai, S.Y. and Tsai M.J. (2006) Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Research, 66, 11039-11046. doi:10.1158/0008-5472.CAN-06-2442
[23] Matocha, M.F., Fitzpatrick, S.W., Atack, J.R. and Rapoport, S.I. Matocha, M.F., Fitzpatrick, S.W., Atack, J.R., Rapoport, S.I. (1999) pp60c-src kinase expression in brain of adult rats in relation to age. Experimental Gerontology, 25, 47-54. doi:10.1016/0531-5565(90)90008-P
[24] Johannessen, M., Delghandi, M.P. and Moens, U. (2004) What turns CREB on? Cell Signal. Cell Signaling, 16, 1211-1227. doi:10.1016/j.cellsig.2004.05.001
[25] Costantini, C., Scrable, H. and Puglielli, L. (2006) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO Journal, 25, 1997-2006. doi:10.1038/sj.emboj.7601062
[26] Benitah, S.A. (2001) Intracellular signalling pathways and carcinogenesis. Clinical and. Translational Oncology, 3, 274-278.
[27] Burgoyne, L.A. and Hewish, D.R. (1972) The cell nucleus IV. Academic Press, New York.
[28] Dignam, J.D., Lebovitz, R.M. and Roeder, R.G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research, 11, 1475-1489. doi:10.1093/nar/11.5.1475
[29] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Annals of Biochemistry, 72, 248-254.
[30] McGuffin, L.J., Bryson, K. and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16, e404-e405.
[31] Sharma, P.K. and Thakur, M.K. (2006) Expression of estrogen receptor (ER) α and β in mouse cerebral cortex: Effect of age, sex and gonadal steroids. Neurobiology of Aging, 27, 880-887. doi:10.1016/j.neurobiolaging.2005.04.003
[32] Sharma, P.K. and Thakur, M.K. (2008) Binding of estrogen receptor α promoter to nuclear proteins of mouse cerebral cortex: Effect of age, sex and gonadal steroids. Bio-gerontology, 9, 467-478. doi:10.1007/s10522-008-9166-2
[33] Ghosh, S. and Thakur, M.K. (2009) Interaction of ERα ligand binding domain with nuclear proteins of aging mouse brain. Journal of Neuroscience Research, 87, 2591-2600. doi:10.1002/jnr.22068
[34] Ghosh, S. and Thakur, M.K. (2009b) Interaction of ERα transactivation domain with nuclear proteins of mouse brain: P68 RNA helicase shows age- and sex-specific change. Journal of Neuroscience Research, 6, 1323-1328. doi:10.1002/jnr.21948
[35] Thakur, M.K. and Ghosh, S. (2009) Interaction of ERα transactivation domain with MTA1 decreases in old mouse brain. Journal of Molecular Neurosciences, 37, 269-273. doi:10.1007/s12031-008-9131-1
[36] Paramanik, V. and Thakur, M.K. (2010b) Overexpression of mouse estrogen receptor β decreases but its transactivation and ligand binding domains increase the growth characteristics of E. coli. Molecular Biotechnology, 47, 26-33. doi:10.1007/s12033-010-9308-z
[37] Paramanik, V. and Thakur, M.K. (2011b) NMR analysis reveals 17β-estradiol induced conformational change in ERβ ligand binding domain expressed in E. Coli Molecular Biology Reports, 38, 4657-4661. doi:10.1007/s11033-010-0600-6
[38] Arai, H., Ozaki, T., Niizuma, H., Nakamura, Y., Ohira, M., Takano, K., Matsumoto, M., Nakagawara. A. (2008) ERAP140/Nbla10993 is a novel favorable prognostic indicator for neuroblastoma induced in response to retinoic acid. Oncology Reports, 19, 1381-1388.
[39] Levine, R.L. and Stadtman, E.R. (2001) Oxidative modifications of proteins during aging. Experimental Gerontology, 36, 1495-1502. doi:10.1016/S0531-5565(01)00135-8
[40] Middleton, F.A., Pato, M.T., Gentile, K.L., Morley, C.P., Zhao, X., Eisener, A.F., Brown, A., Petryshen, T.L., Kirby, A.N., Medeiros, H., Carvalho, C., Macedo, A., Dourado, A., Coelho, I., Valente, J., Soares, M.J., Ferreira, C.P., Lei, M., Azevedo, M.H., Kennedy, J.L., Daly, M.J., Sklar, P. and Pato, C.N. (2004) Genome wide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping Assay: A comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. The American Journal of Human Genetics, 74, 886-897. doi:10.1086/420775
[41] Geourjon, C. and Deleage, G. (1994) SOPM: A self-optimised method for protein secondary structure prediction. Protein Engineering, 7, 157-164. doi:10.1093/protein/7.2.157
[42] Geourjon, C. and Deleage, G. (1995) ANTHEPROT 2.0: A three-dimensional module fully coupled with protein sequence analysis methods. Journal of Molecular Graphics, 13, 209-212. doi:10.1016/0263-7855(95)00035-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.