Dust Plasma Effect on the Etching Process of Si[100] by Ultra Low Frequency RF Plasma

Abstract

Dust-plasma interactions play vital roles in numerous observed phenomena in the space environment, their scope in the industrial laboratory has grown rapidly in recent times to include such diverse areas as materials processing, microelectronics, lighting and nuclear fusion. The etching processes of Si wafer has been studied using Ultra low frequency RF plasma (ULFP) at (1 KHz) by two different techniques namely: ion etching using inert gas only (e.g., argon gas), and ion chemical etching using an active gas (beside the inert gas) such as oxygen. In the case of large dust particle, the dust might act as a floating body in the plasma collecting equal fluxes of electrons and ions. The velocity of the ions flux out from the mesh (cathode) and cause ion sputtering for the sample (Si-Wafer) measured, moreover the rate coefficient for collection of electrons and ions by dust (K) is calculated here, the presence of dust, however, may itself cause loss process. As the plasma density increases, the etching rate increases and the volumetric rate of loss of electron and ions due to dust particle increases (K). A comparison between the volumetric rate of loss (K) due to ion chemical etching (75% Ar/25% O2) and ion etching (Pure Ar) has been carried out.

Share and Cite:

A. Galaly and F. Elakshar, "Dust Plasma Effect on the Etching Process of Si[100] by Ultra Low Frequency RF Plasma," Journal of Modern Physics, Vol. 4 No. 2, 2013, pp. 215-225. doi: 10.4236/jmp.2013.42030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Hopwood, C. R. Guarnieri, S. J. Whitehair and J. J. Cuomo, “Langmuir Probe Measurements of a Radio Frequency Induction Plasma,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 11, No. 1, 1993, p. 152.
[2] A. R. Galaly, “Nano-Coating Process for Si[100] Wafer Using Atmospheric Pressure Plasma Jet (APPJ),” Journal of Modern Physics, Vol. 3, 2012, pp. 1031-1039. doi:10.4236/jmp.2012.39136
[3] H.-U. Kim, C. Yi and S.-W. Rhee, “The Effect of He or Ar/O2 Plasma Treatment on Si Surface Prior to Chemical Vapor Deposition of SiO2,” Journal of Materials Science: Materials in Electronics, Vol. 15, No. 1, 2004, pp. 37-41. doi:10.1023/A:1026240904706
[4] A. R. Galaly, M. A. Hassouba and U. M. Rashed, “Analysis of Cylindrical Langmuir Probe Using Experiment and Different Theories,” Plasma Physics Report Journal, Vol. 39, No. 3, 2013, pp. 1-8.
[5] A. R. Galaly and F. F. El Akshar, “Comparison between Experimental and Theoretical Consideration for Three Different Schematics Plasma Reactors,” 8th International Scientific Conference Environment, Development, and Bioinformatics, Cairo, 26-28 March 2012.
[6] N. Hershkowitz and R. A. Breun, “Diagnostics for Plasma Processing (Etching Plasmas),” Review of Scientific Instruments, Vol. 68, No. 1, 1997, p. 880. doi:10.1063/1.1147752
[7] K. H. Bai, J. I. Hong, S. J. You, C. K. Choi and H. Y. Chang, “The Effects of Mixing Molecular Gases on Plasma Parameters in a System with a Grid-Controlled Electron Temperature,” Physics of Plasmas, Vol. 9, No. 3, 2002, p. 1025. doi:10.1063/1.1436129
[8] A. Martsutani, H. Ohtsuski and F. Koyama, “Inductively Coupled Plasma Etching of Silicon Using Solid Iodine as an Etching Gas Source,” Japanese Journal of Applied Physics, Vol. 50, No. 3, 2011, 4 p. doi:10.1143/JJAP.50.06GG07
[9] Y. Takao, K. Eriguchi and K. Ono, “Effect of Capacitive Coupling in a Miniature Inductively Coupled Plasma Source,” Journal of Applied Physics, Vol. 112, No. 9, 2012, Article ID: 093306. doi:10.1063/1.4764333
[10] B. Radjenovic and M. Radmilovic, “3D Etching Profile Evolution Simulations: Time Dependence Analysis of the Profile Charging during SiO2 Etching in Plasma,” Journal of Physics: Conference Series, Vol. 86, No. 1, 2007, Article ID: 012017. doi:10.1088/1742-6596/86/1/012017
[11] M. A. Lieberman and C. Suwon, “Local and Global Particle and Power Balance in Large Area Capacitive Discharges,” Plasma Sources Science and Technology, Vol. 12, No. 2, 2003, p. 244. doi:10.1088/0963-0252/12/2/316
[12] N. Y. Babaeva and M. J. Kushner, “Penetration of Plasma into the Wafer-Focus Ring Gap in Capacitively Coupled Plasmas,” Journal of Applied Physics, Vol. 101, No. 11, 2007, 11 p. doi:10.1063/1.2736333
[13] D. Gahan, S. Daniels, C. Hayden, P. Scullin, D. O’Sullivan, Y. T. Pei and M. B. Hopkins, “Ion Energy Distribution Measurements in rf and Pulsed dc Plasma Discharges,” Plasma Sources Science and Technology, Vol. 21, No. 2, 2012, Article ID: 024004. doi:10.1088/0963-0252/21/2/024004
[14] K. Maeshige, G. Washio, T. Yagisawa and T. Makabe, “Functional Design of a Pulsed Two-Frequency Capacitively Coupled Plasma in CF4/Ar for SiO2 Etching,” Journal of Applied Physics, Vol. 91, No. 12, 2002, 8 p. doi:10.1063/1.1478138
[15] S. M. Han and E. S. Aydil, “Study of Surface Reactions during Plasma Enhanced Chemical Vapor Deposition of SiO2 from SiH4, O2, and Ar plasma,” Journal of Vacuum Science & Technology A, Vol. 14, No. 4, 1996, 9 p. doi.:10.1116/1.580082
[16] F. Ren, S. J. Pearton, J. R. Lothian, C. R. Abernathy and W. S. Hobson, “Reduction of Sidewall Roughness during Dry Etching of SiO2,” Journal of Vacuum Science & Technology B, Vol. 10, No. 6, 1992, 5 p. doi:10.1116/1.586075
[17] N. Bibinov, H. Halfmann and P. Awakowicz, “Determination of the Electron Energy Distribution Function via Optical Emission Spectroscopy and a Langmuir Probe,” Plasma Sources Science and Technology, Vol. 17, No. 3, 2008, Article ID: 035004. doi:10.1088/0963-0252/17/3/035004
[18] B. Doggett and J. G. Lunney, “Langmuir Probe Characterization of Laser Ablation Plasmas,” Journal of Applied Physics, Vol. 105, No. 3, 2009, Article ID: 033306. doi:10.1063/1.3056131
[19] G. Guethlein, T. Houck, J. McCarrick and S. Sampayan, “Faraday Cup Measurements of Ions Backstreaming into a Electron Beam Impinging on a Plasma Plume,” Proceedings of Linear Accelerator Conference, Monterey, 21- 25 August 2000, pp. 467-469.
[20] S. Cho and M. A. Lieberman, “Local and Global Particle and Power Balance in Large Area Capacitive Discharges,” Plasma Sources Science and Technology, Vol. 12, No. 2, 2003, p. 224. doi:10.1088/0963-0252/12/2/316
[21] A. R. Galaly and F. F. El Akshar, “Characterstics of Ultra Low Frequancy Plasma (ULFP) Producing Cathode Etching Process,” International Journal of Multidisciplinary Research and Advances in Engineering (IJMRAE), Vol. 5, No. I, 2013, pp. 169-179.
[22] A. R. Galaly and F. F. El Akshar, “A Comparison between Three Different Electrode Configurations in an Argon RF Plasma,” International Journal of Engineering Research and Industrial Applications (IJERIA), Vol. 6, No. 1, 2013.
[23] R. J. Shul and S. J. Pearton, “Handbook of Advanced Plasma Processing Techniques,” Springer-Verlag, New York, Inc., 2000.
[24] V. E. Fortov, A. G. Khrapak, S. A. Khrapak and O. F. Petrov, “Dusty Plasmas,” Physics Uspekhi, Vol. 47, No. 5, 2004, p. 447. doi:10.1070/PU2004v047n05ABEH001689
[25] A. A. Mamun and P. K. Shukla, “Charging of Dust Grains in a Plasma with Negative Ions,” Physics of Plasmas, Vol. 10, No. 5, 2003, pp. 1518-1520.
[26] C. Zafiu, A. Melzer and A. Piel, “Measurement of the Ion Drag Force on Falling Dust Particles and Its Relation to the Void Formation in Complex (Dusty) Plasmas,” Physics of Plasmas, Vol. 10, No. 5, 2003, 5 p. doi:10.1063/1.1569486
[27] M. J. McCaughey and M. J. Kushner, “A Model for Particulate Contaminated Glow Discharges,” Journal of Applied Physics, Vol. 69, No. 10, 1991, 10 p.
[28] K. Ostrikov, I. B. Denysenko, S. V. Vladimirov, S. Xu, H. Sugai and M. Y. Yu, “Low-Pressure Diffusion Equilibrium of Electronegative Complex Plasmas,” Physical Review E, Vol. 67, No. 5, 2003, 13 p. doi:10.1103/PhysRevE.67.056408
[29] M. Lampe, G. Joyce, G. Ganguli and V. Gavrishchaka, “Interactions between Dust Grains in a Dusty Plasma,” Physics of Plasmas, Vol. 7, No. 10, 2000, 11 p. doi:10.1063/1.1288910
[30] A. Garscadden, B. N. Ganguly, P. D. Haaland and J. Williams, “Overview of Growth and Behaviour of Clusters and Particles in Plasmas,” Plasma Sources Science and Technology, Vol. 3, No. 3, 1994, p. 239. doi:10.1088/0963-0252/3/3/001
[31] V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak and G. E. Morfill, “Complex (Dusty) Plasmas: Current Status, Open Issues, Perspectives,” Physics Reports, Vol. 421, No. 1-2, 2005, pp. 1-103. doi:10.1016/j.physrep.2005.08.007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.