Broadband Feed for Low Cross-Polarization Uniplanar Tapered Slot Antennas on Low-Permittivity Substrate

Abstract

A broadband feeding technique for the uniplanar tapered slot antenna (TSA) is presented. The TSA operates at a center frequency of 6.5 GHz with a 7 GHz bandwidth (107 percent). The antenna and feed are realized with a broadband microstrip-to-slotline transition on a low permittivity high frequency substrate, Rogers RT/Duroid 5880. The input impedance of the system is designed for 50 Ω compatibility with other system components, and the cross polarization is kept below 30 dB. The developed TSA system was simulated with commercially available electromagnetic software and manufactured. Measured results validate the design process and the antenna’s performance.

Share and Cite:

J. Schorer and J. Bornemann, "Broadband Feed for Low Cross-Polarization Uniplanar Tapered Slot Antennas on Low-Permittivity Substrate," Wireless Engineering and Technology, Vol. 4 No. 1, 2013, pp. 13-18. doi: 10.4236/wet.2013.41003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Z. Irahhauten, J. Dacuna, G. J. M. Janssen and H. Nikookar, “UWB Channel Measurements and Results for Wireless Personal Area Networks Applications,” Proceedings European Conference on Wireless Technology, Paris, 3-4 October 2005, pp. 189-192.
[2] H. Holter, T.-H. Chio and D. H. Schaubert, “Experimental Results of 144-Element Dual-Polarized Endfire Tapered-Slot Phased Arrays,” IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 2000, pp. 1707-1718. doi:10.1109/8.900228
[3] Y. Yao, M. Liu, W. Chen and Z. Feng, “Analysis and Design of Wideband Widescan Planar Tapered Slot Antenna Array,” IET Microwave, Antennas and Propagation, Vol. 4, No. 10, 2010, pp. 1632-1638. doi:10.1049/iet-map.2009.0226
[4] B. Veidt, G. J. Hovey, T. Burgess, R. J. Smegal, R. Messing, A. G. Willis, A. D. Gray and P. E. Dewdney, “Demonstration of a Dual-Polarized Phased-Array Feed,” IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2011, pp. 2047-2057. doi:10.1109/TAP.2011.2122231
[5] B. Y. El Khatib, T. Djerafi and K. Wu, “Three-Dimensional Architecture of Substrate Integrated Waveguide Feeder for Fermi Tapered Slot Antenna Array Applications,” IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 2012, pp. 4610-4618. doi:10.1109/TAP.2012.2207323
[6] P. J. Gibson, “The Vivaldi Aerial,” 9th European Microwave Conference Proceedings, Brighton, 17-20 September 1979, pp. 101-105.
[7] K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren and J. F. Johansson, “Endfire Tapered Slot Antennas on Dielectric Substrate,” IEEE Transactions on Antennas and Propagation, Vol. 33, No. 12, 1985, pp. 1392-1400. doi:10.1109/TAP.1985.1143542
[8] K. C. Gupta, R. Garg, I. J. Bahl and P. Bhartia, “Microstrip Lines and Slotlines,” Artech House, Boston, 1996.
[9] M. M. Zinieris, R. Sloan and L. E. Davis, “A Broadband Microstrip-Slot-Line Transition,” Microwave and Optical Technology Letters, Vol. 18, No. 5, 1998, pp. 339-342. doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9
[10] M. E. Bialkowski and Y. Wang, “Design of 180? Hybrid Employing Ground Slots and Microstrip-Slot Transitions,” Proceedings International Conference on Microwave Radar and Wireless Communications (MIKON), Vilnius, 14-16 June, 2010, pp. 1-4.
[11] W. Wen, W. Xuetian and F. Lili, “LTSA with MicrostripSlotline Transition for MFPA Imaging Systems,” Proceedings International Conference on Microwave Technology and Computational Electromagnetics, Beijing, 22-25 May 2011, pp. 230-232.
[12] A. M. Abbosh, “Wideband Planar Crossover Using TwoPort and Four-Port Microstrip to Slotline Transitions,” IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 2012, pp. 465-467. doi:10.1109/LMWC.2012.2209632
[13] D.-L. Zhai, C.-X. Zhang, Z.-M.Yang and S.-J. Hu, “Design of the Antenna Array with a Novel Feeding Network,” Proceedings International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shenzhen, 5-8 May 2012, pp. 1-4.
[14] P. T. Nguyen, A. Abbosh and S. Crozier, “Ultra-WideBand Balun Using Microstrip to Slotline Transitions,” Proceedings IEEE Asia-Pacific Conference on Antennas and Propagation, Singapore city, 27-29 August 2011, pp. 1-2.
[15] H. Sato, Y. Takagi and K. Sawaya, “High Gain Antipodal Fermi Antenna with Low Cross Polarization,” IEICE Transactions on Communications, Vol. E94-B, No. 8, 2011, pp. 2292-2297.
[16] J. Bai, S. Shi and D. W. Prather, “Modified Compact Antipodal Vivaldi Antenna for 4-50-GHz UWB Application,” IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 2011 pp. 1051-1057. doi:10.1109/TMTT.2011.2113970
[17] M. Sun, X. Qing and Z. N. Chen, “60-GHz Antipodal Fermi Antenna on PCB,” European Conference on Antennas and Propagation Proceedings, Rome, 11-15 April 2011, pp. 3264-3267.
[18] R.-Y. Fang, J.-K. Chuang and C.-L. Wang, “Coplanar Waveguide-to-Rectangular Waveguide Transition Using Meander Slotline,” Proceedings Asia-Pacific Microwave Conference, Melbourne, 5-8 December 2011, pp. 399402.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.