Thermal Conductivity and Microstructure Properties of Porous SiC Ceramic Derived from Silicon Carbide Powder

Abstract

Porous SiC ceramic were prepared with silicon carbide powder as the aggregate, silicone resin as the binder and pore agent by the process of mixing, iso-static pressure molding, and calcination. The mechanical properties and microstructures of the samples were characterized with a universal testing machine, X-ray diffraction, scanning electron microscope, and mercury injection. Two main factors, molding pressures and silicone resin mass ratio were studied in the experiments. The thermal conductivity of the samples was tested. The compressive strength was up to 19.4 MPa, and the porosities up to 30%. The thermal conductivities, mainly influenced by porosities, increased from 0.68 W.m-1.K-1 to 1.03 W.m-1.K-1 with the porosity decreasing from 41.96% to 31.30%.

Share and Cite:

X. Wu, H. Ma, X. Chen, Z. Li and J. Li, "Thermal Conductivity and Microstructure Properties of Porous SiC Ceramic Derived from Silicon Carbide Powder," New Journal of Glass and Ceramics, Vol. 3 No. 1, 2013, pp. 43-47. doi: 10.4236/njgc.2013.31007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. K??rik, M. Arulepp, M. Karelson and J. Leis, “The Effect of Graphitization Catalyst on the Structure and Porosity of Sic Derived Carbons,” Carbon, Vol. 46, No. 12, 2008, pp. 1579-1587. doi:10.1016/j.carbon.2008.07.003
[2] P. Pastila, V. Helanti, A.-P. Nikkil? and T. M?ntyl?, “Environmental Effects on Microstructure and Strength of Sic-Based Hot Gas Filters,” Journal of the European Ceramic Society, Vol. 21, No. 9, 2001, pp. 1261-1268. doi:10.1016/S0955-2219(00)00326-5
[3] J. F. Li, H. Lin and J. B. Li, “Factors That Influence the Flexural Strength of Sic-Based Porous Ceramics Used for Hot Gas Filter Support,” Journal of the European Ceramic Society, Vol. 31, No. 5, 2011, pp. 825-831. doi:10.1016/j.jeurceramsoc.2010.11.033
[4] U. Soy, A. Demir and F. Caliskan, “Effect of Bentonite Addition on Fabrication of Reticulated Porous Sic Ceramics for Liquid Metal Infiltration,” Ceramics International, Vol. 37, No. 1, 2011, pp. 15-19. doi:10.1016/j.ceramint.2010.07.028
[5] R. J. Ciora, B. Fayyaz, P. K. T. Liu, V. Suwanmethanond, R. Mallada, M. Sahimi and T. T. Tsotsis, “Preparation and Reactive Applications of Nanoporous Silicon Carbide Membranes,” Chemical Engineering Science, Vol. 59, No. 22-23, 2004, pp. 4957-4965. doi:10.1016/j.ces.2004.07.015
[6] S. Biamino, A. Antonini, C. Eisenmenger-Sittner, L. Fuso, M. Pavese, P. Fino, E. Bauer and C. Badini, “Multilayer SiC for Thermal Protection System of Space Vehicles with Decreased Thermal Conductivity through the Thickness,” Journal of the European Ceramic Society, Vol. 30, No. 8, 2010, pp. 1833-1840. doi:10.1016/j.jeurceramsoc.2010.01.040
[7] K. Bourenane, A. Keffous, G. Nezzal, A. Bourenane, Y. Boukennous and A. Boukezzata, “Influence of Thickness and Porous Structure of Sic Layers on the Electrical Properties of Pt/SiC-pSi and Pd/SiC-pSi Schottky Diodes for Gas Sensing Purposes,” Sensors and Actuators B: Chemical, Vol. 129, No. 2, 2008, pp. 612-620. doi:10.1016/j.snb.2007.09.039
[8] A. Dey, N. Kayal and O. Chakrabarti, “Preparation of Porous Sic Ceramics by an Infiltration Technique,” Ceramics International, Vol. 37, No. 1, 2011, pp. 223-230.
[9] J. Bai, X. Yang, Y. Shi, S. Xu and J. Yang, “Fabrication of Directional SiC Porous Ceramics Using Fe2O3 as Pore-Forming Agent,” Materials Letters, Vol. 78, 2012, pp. 192-194. doi:10.1016/j.matlet.2012.03.046
[10] A. Maity, D. Kalita, N. Kayal, T. Goswami, O. Chakrabarti and P. G. Rao, “Oxidation Behavior of SiC Ceramics Synthesized from Processed Cellulosic Bio-Precursor,” Ceramics International, Vol. 38, No. 6, 2012, pp. 4701-4706. doi:10.1016/j.ceramint.2012.02.054
[11] N. Popovska, E. Alkhateeb, A. P. Fr?ba and A. Leipertz, “Thermal Conductivity of Porous Sic Composite Ceramics Derived from Paper Precursor,” Ceramics International, Vol. 36, No. 7, 2010, pp. 2203-2207. doi:10.1016/j.ceramint.2010.05.028
[12] K. E. Pappacena, M. T. Jonson, H. Wang, W. D. Porter and K. T. Faber, “Thermal Properties of Wood-Derived Copper-Silicon Carbide Composites Fabricated via Electro-Deposition,” Composites Science and Technology, Vol. 70, No. 3, 2010, pp. 478-484.
[13] F. Chen, Y. Yang, Q. Shen and L. Zhang, “Macro/Micro Structure Dependence of Mechanical Strength of Low Temperature Sintered Silicon Carbide Ceramic Foams,” Ceramics International, Vol. 38, No. 6, 2012, pp. 5223-5229.
[14] D. B. Hondongwa, L. R. Olasov, B. C. Daly, S. W. King and J. Bielefeld, “Thermal Conductivity and Sound Velocity Measurements of Plasma Enhanced Chemical Vapor Deposited a-SiC:H Thin Films,” Thin Solid Films, Vol. 519, No. 22, 2011, pp. 7895-7898. doi:10.1016/j.tsf.2011.05.014
[15] B. K. Jang and Y. Sakka, “Influence of Microstructure on the Thermophysical Properties of Sintered Sic Ceramics,” Journal of Alloys and Compounds, Vol. 463, No. 1-2, 2008, pp. 493-497. doi:10.1016/j.jallcom.2007.09.055
[16] W. S. Yang, S. Biamino, E. Padovano, M. Pavese, S. Marchisio, G. D. Amico, S. Ceresa Mio, X. Chen, P. Fino and C. Badini, “Thermophysical Properties of Sic Multilayer Prepared by Tape Casting and Pressure Less Sintering,” Composite Structures, Vol. 96, 2013, pp. 469-475. doi:10.1016/j.compstruct.2012.09.018

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.