Share This Article:

A Simple Mathematical Formulation of the Correspondence Principle

Abstract Full-Text HTML XML Download Download as PDF (Size:134KB) PP. 108-112
DOI: 10.4236/jmp.2013.41017    6,171 Downloads   10,248 Views   Citations


In this paper we suggest a simple mathematical procedure to derive the classical probability density of quantum systems via Bohr’s correspondence principle. Using Fourier expansions for the classical and quantum distributions, we assume that the Fourier coefficients coincide for the case of large quantum number. We illustrate the procedure by analyzing the classical limit for the quantum harmonic oscillator and the particle in a box, although the method is quite general. We find, in an analytical fashion, the classical distribution arising from the quantum one as the zeroth order term in an expansion in powers of Planck’s constant. We interpret the correction terms as residual quantum effects at the microscopic-macroscopic boundary.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Bernal, A. Martín-Ruiz and J. García-Melgarejo, "A Simple Mathematical Formulation of the Correspondence Principle," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 108-112. doi: 10.4236/jmp.2013.41017.


[1] A. J. Makowski, “Exact Classical Limit of Quantum Mechanics: Central Potentials and Specific States,” Physical Review A, Vol. 65, No. 3, 2002, Article ID: 032103. doi:10.1103/PhysRevA.65.032103
[2] G. Yoder, “Using Classical Probability Functions to Illuminate the Relation between Classical and Quantum Physics,” American Journal of Physics, Vol.74, No. 5, 2006, p. 404. doi:10.1119/1.2173280
[3] M. Planck, “Lectures on the Theory of Heat Radiation,” Dover, New York, 1959.
[4] N. Bohr, “The Theory of Spectra and Atomic Constitution,” Cambridge University Press, London, 1922.
[5] R. L. Liboff, “The Correspondence Principle Revisited,” Physics Today, Vol. 37, No. 2, 1984, pp. 50-55. doi:10.1063/1.2916084
[6] R. L. Liboff, “Bohr’s Correspondence Principle for Large Quantum Numbers,” Foundations of Physics, Vol. 5, No. 2, 1975, pp. 271-293. doi:10.1007/BF00717443
[7] R. L. Liboff, “On the Potential x2n and the Correspondence Principle,” International Journal of Theoretical Physics, Vol. 18, No. 3, 1979, pp. 185-191. doi:10.1007/BF00670395
[8] L. Brillouin, “La mécanique ondulatorie de Schr?dinger: une méthode générale de resolution par approximations successives,” Comptes Rendus de l’Academie des Sciences, Vol. 183, No. 24, 1926.
[9] H. Kramers, “Wellenmechanik und halbz?hlige Quantisierung,” Zeitschriftfür Physik, Vol. 39, No. 10-11, 1926, pp. 828-840. doi:10.1007/BF01451751
[10] G. Wentzel, “EineVerallgemeinerung der Quantenbedingungenfür die Zwecke der Wellenmechnik,” Zeitschriftfür Physik, Vol. 38, No. 6-7, 1926, pp. 518-529. doi:10.1007/BF01397171
[11] D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden Variables’ I,” Physical Review Letters, Vol. 85, 1952 pp. 166-179.
[12] R. W. Robinett, “Quantum and Classical Probability Distributions for Position and Momentum,” American Journal of Physics, Vol. 63, No. 9, 1994, pp. 823-832. doi:10.1119/1.17807
[13] P. Ehrenfest, “Bemerkungüber die angen?herte Gültigkeit der klassischen Mechanikinnerhalb der Quantemechanik,” Zeitschriftfür Physik, Vol. 45, No. 7-8, 1927, pp. 455-457. doi:10.1007/BF01329203
[14] E. Schr?dinger, “Der Energieinhalt der Festk?rperimLichte der neueren Forschung,” PhysikalischeZeitschrift, Vol. 20, No. 4, 1919, pp. 450-455.
[15] E. C. G. Sudarshan, “Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams,” Physical Review Letters, Vol. 10, No. 7, 1963, pp. 277-279. doi:10.1103/PhysRevLett.10.277
[16] R. J. Glauber, “Coherent and Incoherent States of the Radiation Field,” Physical Review, Vol. 131, No. 6, 1963, pp. 2766-2788. doi:10.1103/PhysRev.131.2766
[17] P. E. Wigner, “On the Quantum Correction for Thermodynamic Equilibrium,” Physical Review, Vol. 40, No. 5, 1932, pp. 749-759. doi:10.1103/PhysRev.40.749
[18] A. Kenfack and K. Zyczkowski, “Negativity of the Wigner Function as an Indicator of Non-Classicality,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 10, 2004, pp. 396-404. doi:10.1088/1464-4266/6/10/003
[19] R. L. Hudson, “When Is the Wigner Quasi-Probability Density Non-Negative?” Reports on Mathematical Physics, Vol. 6, No. 2, 1974, pp. 249-252. doi:10.1016/0034-4877(74)90007-X
[20] W. B. Case, “Wigner Functions and Weyl Transforms for Pedestrians,” American Journal of Physics, Vo.76, No. 10, 2008, pp. 937-946. doi:10.1119/1.2957889
[21] L. E. Ballentine, “Quantum Mechanics: A Modern Development,” World Scientific, New York, 1998.
[22] R. Liboff, “Introductory Quantum Mechanics,” 4th Edition, Addison-Wesley, Boston, 2002.
[23] E. G. P. Rowe, “The Classical Limit of Quantum Mechanical Hydrogen Radial Distributions,” European Journal of Physics, Vol. 8, No. 2, 1987, pp. 81-87. doi:10.1088/0143-0807/8/2/002
[24] W. Heisenberg, “The Physical Principles of the Quantum Theory,” Dover Publications, New York, 1930.
[25] A. J. Makowski, “A Brief Survey of Various Formulations of the Correspondence Principle,” European Jour- nal of Physics, Vol. 27, No. 5, 2006, pp. 1133-1139. doi:10.1088/0143-0807/27/5/012
[26] W. Heisenberg, “übereine Anwendung des Korrespondenzprinzips auf die Fragenach der Polarization des Fluoreszenzlichtes,” Zeitschriftfür Physik, Vol. 31, No. 1, 1925, pp. 617-626. doi:10.1007/BF02980618
[27] H. A. Kramers and W. Heisenberg, “über die Streuung von Strahlungdurch Atome,” Zeitschriftfür Physik, Vol. 31, No. 1, 1925, pp. 681-708. doi:10.1007/BF02980624
[28] E. Schrodinger, “Der stetige übergang von der Mikrozur Makromechanik,” Die Naturwissenschaften, Vol. 14, No. 28, 1926, pp. 664-666. doi:10.1007/BF01507634
[29] G. Q. Hassoun and D. H. Kobe, “Synthesis of the Planck and Bohr formulations of the Correspondence Principle,” American Journal of Physics, Vol. 57, No. 7, 1998, pp. 658-662. doi:10.1119/1.15933
[30] C. M. Bender, D. W. Hook, P. N. Meisinger and Q. Wang, “Complex Correspondence Principle,” Physical Review Letters, Vol. 104, No. 6, 2010, Article ID: 061601. doi:10.1103/PhysRevLett.104.061601
[31] J. Ford and G. Mantica, “Does Quantum Mechanics Obey the Correspondence Principle? Is it Complete?” American Journal of Physics, Vol. 60, No. 12, 1992, pp. 1086-1098. doi:10.1119/1.16954
[32] B. Gao, “Breakdown of Bohr’s Correspondence Principle,” Physical Review Letters, Vol. 83, No. 21, 1999, pp. 4225-4228. doi:10.1103/PhysRevLett.83.4225
[33] C. Boisseau, E. Audouard and J. Vigue, “Comment on Breakdown of Bohr’s Correspondence Principle,” Physical Review Letters, Vol. 86, No. 12, 2001, p. 2694. doi:10.1103/PhysRevLett.86.2694
[34] C. Eltschka, H. Friedrich and M. J. Moritz, “Comment on Breakdown of Bohr’s Correspondence Principle,” Physical Review Letters, Vol. 86, No. 12, 2001, p. 2693. doi:10.1103/PhysRevLett.86.2693
[35] A. Bolivar, “Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit,” Springer, New York, 2010.
[36] G. G. Cabrera and M. Kiwi, “Large Quantum-Number States and the Correspondence Principle,” Physical Review A, Vol. 36, No. 6, 1987, pp. 2995-2998. doi:10.1103/PhysRevA.36.2995
[37] M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables,” Dover Publications, New York, 1965.
[38] I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” 7th Edition, Elsevier Academic Press Publications, New York, 2007.
[39] C. K. Zachos, D. B. Fairlie and T. L. Curtright, “Quantum Mechanics in Phase Space: An Overview with Selected Papers,” World Scientific Publishing Company, Singapore City, 2005.
[40] D. Dragoman and M. Dragoman, “Quantum-Classical Analogies,” SpingerVerlag, New York, 2004.
[41] D. Mustard, “The Fractional Fourier Transform and the Wigner Distribution,” The Journal of the Australian Mathematical Society, Serie B. Applied Mathematics, Vol. 38, No. 2, 1996, pp. 209-219. doi:10.1017/S0334270000000606
[42] G. Szeg, “Orthogonal Polynomials,” American Mathematical Society, Providence, 1939.
[43] D. Sen and S. Sengupta, “Classical Limit for quantum Mechanical Energy Eigenfunctions,” Current Science, Vol. 87, No. 5, 2004, pp. 620-627.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.