Kinetic Analysis of Isothermal Leaching of Zinc from Zinc Plant Residue

Abstract

The sulfuric acid leaching of zinc plant residues was studied in an attempt to find a suitable hydrometallurgical method for zinc recovery. The parameters evaluated consist of reaction time, Solid-to-liquid-ratio, reaction temperature, agitation rate and pH. The results of kinetic analysis of the leaching data under various experimental conditions indicated that there is a reaction controlled by the solution transport of protons through the porous product layer with activation energy of about 1 kJ/mol for different constant solid to liquid ratios. Based on the shrinking core model (SCM), the following semiempirical rate equation was established:1-3(1-a)2/3+2(1-a)=0.001187×[H+]0.016×[(S/L)]-1.34×exp(-1/RT) ×t. On the other hand, activation energy was obtained from a model-free method using isothermal measurements. Values for activation energy were calculated as a result of the conversion function with an average of 2.9 kJ/mol. This value is close to that determined previously, using shrinking core model (SCM).

Share and Cite:

Hollagh, A. , Alamdari, E. , Moradkhani, D. and Salardini, A. (2013) Kinetic Analysis of Isothermal Leaching of Zinc from Zinc Plant Residue. International Journal of Nonferrous Metallurgy, 2, 10-20. doi: 10.4236/ijnm.2013.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. K. Jha, V. Kumar and R. J. Singh, “Review of Hydro-Metallurgical Recovery of Zinc from Industrial Wastes,” Resources, Conservation and Recycling, Vol. 33, 2001, pp. 1-22. doi:10.1016/S0921-3449(00)00095-1
[2] M. N. Babu, K. K. Sahu and B. D. Pandey, “Zinc Recovery from Sphalerite Concentrate by Direct Oxidative Leaching with Ammonium, Sodium and Potassium Persulphates,” Hydrometallurgy, Vol. 64, No. 2, 2002, pp. 119-129. doi:10.1016/S0304-386X(02)00030-0
[3] A. D. Souza, P. S. Pina, V. A. Leao, C. A. Silva and P. F. Siqueria, “The Leaching Kinetics of a Zinc Sulphide Concen-trate in Acid Ferric Sulphate,” Hydrometallurgy, Vol. 89, No. 1-2, 2007, pp. 72-81.
[4] S. Aydogan, “Dissolution Kinetics of Sphalerite with Hydrogen Peroxide in Sulphuric Acid Medium,” Chemical Engineering Journal, Vol. 123, 2006, pp. 65-70. doi:10.1016/j.cej.2006.07.001
[5] S. Aydogan, A. Aras and M. Canbazoglu, “Dissolution Ki-Netics of Sphalerite in Acidic Ferric Chloride Leaching,” Chemical Engineering Journal, Vol. 114, No. 1-3, 2005, pp. 67-72.
[6] M. Al-Harahsheh and S. Kingman, “The Influence of Microwaves on the Leaching of Sphalerite in Ferric Chloride,” Chemical Engineering and Processing, Vol. 46, No. 10, 2007, pp. 883-888. doi:10.1016/j.cep.2007.06.009
[7] P. Peng, H. Xie and L. Lu, “Leaching of a Sphalerite Concentrate with H2SO4-HNO3 Solutions in the Presence of C2Cl4,” Hydrometallurgy, Vol. 80, No. 4, 2005, pp. 265-271. doi:10.1016/j.hydromet.2005.08.004
[8] J. S. Niederkorn, “Kinetic Study on Catalytic Leaching of Sphalerite,” Journal of Marine Engineering and Technology, Vol. 37, No. 7, 1985, pp. 53-56.
[9] S. Espiari, F. Rashchi and S. K. Sadrnezhaad, “Hydrometallurgical Treatment of Tailings with High Zinc Content,” Hydrometallurgy, Vol. 82, No. 1-2, 2006, pp. 54-62.
[10] B. K. Thomas and D. J. Fray, “Leaching of Oxidic Zinc Materials with Chlorine and Chlorine Hydrate,” Metallurgical Transactions, Vol. 12, No. 2, 1981, pp. 281-285. doi:10.1007/BF02654461
[11] J. Frenay, “Leaching of Oxidised Zinc Ores in Various Media,” Hydrometallurgy, Vol. 15, 1985, pp. 243-253. doi:10.1016/0304-386X(85)90057-X
[12] E. A. Abdel-Aal, “Kinetics of Sulfuric Acid Leaching of Low-Grade Zinc Silicate Ore,” Hydrometallurgy, Vol. 55, 2000, pp. 247-254. doi:10.1016/S0304-386X(00)00059-1
[13] A. D. Souza, P. S. Pina, E. V. O. Lima, C. A. Da Silva and V. A. Leao, “Kinetics of Sulphuric Acid Leaching of A Zinc Silicate Calcine,” Hydrometallurgy, Vol. 89, No. 3, 2007, pp. 337-345. doi:10.1016/j.hydromet.2007.08.005
[14] M. G. Bodas, “Hydrometallurgical Treatment of Zinc Silicate Ore from Thailand,” Hydrometallurgy, Vol. 40, No. 1-2, 1996, pp. 37-49.
[15] Y. Zhao and R. Stanforth, “Production of Zn Powder by Alkaline Treatment of Smithsonite Zn-Pb Ores,” Hydrometallurgy, Vol. 56, No. 2, 2000, pp. 237-249. doi:10.1016/S0304-386X(00)00079-7
[16] M. Kul and Y. Topkaya, “Recovery of Germanium and Other Valuable Metals from Zinc Plant Residues,” Hydrometallurgy, Vol. 92, No. 3-4, 2008, pp. 87-94.
[17] Y. Wang and Z. Chunshan, “Hydrometallurgical Process for Recovery of Cobalt from Zinc Plant Residue,” Hydrometallurgy, Vol. 63, No. 3, 2002, pp. 225-234. doi:10.1016/S0304-386X(01)00213-4
[18] A. Rusen, A. S. Sunkar and Y. A. Topkaya, “Zinc and Lead Extraction from Cinkur Leach Residues by Using Hydrometallurgical Method,” Hydrometallurgy, Vol. 93, No. 1-2, 2008, pp. 45-50.
[19] F. Farahmand, D. Moradkhani, M. S. Safarzadeh and F. Rashchi, “Brine Leaching of Lead-Bearing Zinc Plant Residues: Process Optimization Using Orthogonal Array Design Methodology,” Hydrometallurgy, Vol. 95, No. 3-4, 2009, pp. 316-324.
[20] S. Kikuchi, T. Goto and A. Nakayama, “Recovery of Zinc from Leaching Residue in Zinc Hydrometallurgy by TOPO,” Journal of the Mining and Metallurgical Institute of Japan, Vol. 101, No. 1168, 1985, pp. 381-385.
[21] K. L. Bhat and K. A. Natrajan, “Recovery of Zinc from Leach Residues—Problems and Developments,” Transactions of the Indian Institute of Metals, Vol. 40, No. 4, 1987, p. 361.
[22] A. V. Ropenack, W. Bohmer, G. Smykalla and V. Wiegand, “Method of Processing Residues from the Hydrometallurgical Production of Zinc,” US Patent No. 4789446, 1987.
[23] F. J. J. B. Bodson, “Recovery of Zinc Values from Zinc Plant Residue,” US Patent No. 3652264, 1972.
[24] Z. Youcai and R. Stanforth, “Extraction of Zinc from Zinc Ferrites by Fusion with Caustic Soda,” Mineral Engineering, Vol. 13, No. 13, 2000, pp. 1417-1421.
[25] L. J. L. Blanco, V. F. M. Zapata and D. D. Garcia, “Statistical Analysis of Laboratory Results of Zn Wastes Leaching,” Hydrometallurgy, Vol. 54, No. 1, 1999, pp. 41-48. doi:10.1016/S0304-386X(99)00057-2
[26] M. D. Turan, H. S. Altundogan and F. Tumen, “Recovery of Zinc and Lead from Zinc Plant Residue,” Hydrometallurgy, Vol. 75, No. 1-4, 2004, pp. 169-176. doi:10.1016/j.hydromet.2004.07.008
[27] T. Pecina, T. Franco, P. Castillo and E. Orrantia, “Leaching of a Zinc Concentrate in H2SO4 Solutions Containing H2O2 and Complexing Agents,” Minerals Engineering, Vol. 21, No. 1, 2008, pp. 23-30. doi:10.1016/j.mineng.2007.07.006
[28] H. Y. Sohn and M. E. Wadsworth, “Rate Processes of Extractive Metallurgy,” Plenum Press, New York, 1979. doi:10.1007/978-1-4684-9117-3
[29] M. K. Ghosh, R. P. Das and A. K. Biswas, “Oxidative Ammonia Leaching of Sphalerite—Part I: Noncatalytic Kinetics,” International Journal of Mineral Processing, Vol. 66, No. 1, 2002, pp. 241-254. doi:10.1016/S0301-7516(02)00068-6
[30] M. K. Ghosh, R. P. Das and A. K. Biswas, “Oxidative Ammonia Leaching of Sphalerite: Part II: Cu(II)-Catalyzed Kinetics,” International Journal of Mineral Processing, Vol. 70, No. 1-4, 2003, pp. 221-234.
[31] O. Levenspiel, “Chemical Reaction Engineering,” 2nd Edition, Wiley, New York, 1999.
[32] S. Vyazovkin and W. A. Charles, “Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data,” Thermochimica Acta, Vol. 340-341, 1999, pp. 53-68. doi:10.1016/S0040-6031(99)00253-1
[33] S. Vyazovkin, “Computational Aspects of Kinetic Analysis: Part C. The ICTAC Kinetics Project—the Light at the End of the Tunnel?” Thermochimica Acta, Vol. 355, No. 1, 2000, pp. 155-163. doi:10.1016/S0040-6031(00)00445-7
[34] M. S. Safarzadeh, D. Moradkhani and M. O. Ilkhchi, “Kinetics of Sulfuric Acid Leaching of Cadmium from Cd-Ni Zinc Plant Residues,” Journal of Hazardous Materials, Vol. 163, No. 2-3, 2009, pp. 880-890.
[35] W. L. Choo, M. I. Jeffrey and S. G. Robertson, “Analysis of Leaching and Cementation Reaction Kinetics: Correcting for Volume Changes in Laboratory Studies,” Hydrometallurgy, Vol. 82, No. 1-2, 2006, pp. 110-116.
[36] R. Vaghar, “Hydrometallurgy,” Iranian Copper Industry Co., Iran, 1998.
[37] D. Dreisinger and N. Abed, “A Fundamental Study of the Reductive Leaching of Chalcopyrite Using Metallic Iron Part I: Kinetic Analysis,” Hydrometallurgy, Vol. 66, No. 1, 2002, pp. 37-57. doi:10.1016/S0304-386X(02)00079-8
[38] M. K. Sarker, A. K. M. B. Rashid and A. S. W. Kurny, “Kinetics of Leaching of Oxidized and Reduced Ilmenite in Dilute Hydrochloric Acid Solutions,” International Journal of Mineral Processing, Vol. 80, No. 2-4, 2006, pp. 223-228. doi:10.1016/j.minpro.2006.04.005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.