Organization, expression and evolution of flagellar genesin Rhodobacter sphaeroides 2.4.1

Abstract

Rhodobacter sphaeroides 2.4.1 belongs to the?-3 subdivision of the Proteobacteria. It possesses a multipartite genome structure consisting of two circular chromosomes, andit displays a wide range of metabolic diversity.Approximately 40 flagellar proteins are required for structure, assembly, and regulation of the flagellum formation in most bacterial species. R. sphaeroidescontains two flagellar gene clusters (fla1 and fla2),which encode 38 and 21 proteins, respectively. Thirty-six of these genes exist in duplicate gene-pairs.A combination of genome analysis, phylogenetic analysis and mRNA expression analysis were employed to examine the conservation of structure, function and evolution of fla1 and fla2 in R. sphaeroides. The results demonstrated that fla2, which was shared among members of ?-Proteobacteria, is native toR. sphaeroides, while fla1 was horizontally transferred from a member of ?-Proteobacteria.In addition, genes located in fla1 are expressed over several growth conditions, but those in fla2 are barely expressed.

Share and Cite:

Thapaliya, D. , Myagmarjav, B. , Trahan, C. , Ortiz, D. , Cho, H. and Choudhary, M. (2012) Organization, expression and evolution of flagellar genesin Rhodobacter sphaeroides 2.4.1. Open Journal of Genetics, 2, 5-10. doi: 10.4236/ojgen.2012.24B002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Blair, D. F. (1995) How bacteria sense and swim. Annual Review of Microbiology, 49, 489-520.doi: 10.1146/annurev.mi.49.100195.002421
[2] Macnab, R. M. (2003) How bacteria assemble flagella. Annual Review of Microbiology, 57, 77-100.doi: 10.1146/annurev.micro.57.030502.090832
[3] Liu, R. and Ochman, H. (2007) Stepwise formation of the bacterial flagellar system. Proceedings ofthe National Academy of Sciences, 104, 7116-7121.doi:10.1073/pnas.0700266104
[4] Baker, M. D., Wolanin, P. M., and Stock, J. B. (2006) Systems biology of bacterial chemotaxis. Current Opinion in Microbiology, 9, 187-192.doi: 10.1016/j.mib.2006.02.007
[5] McCarter, L. L. (2004) Dual flagellar systems enable motility under different circumstances. Journal of Molecular Microbiology and Biotechnology, 7, 18-29.doi: 10.1159/000077866
[6] Woese, C. E., Stackebrandt, W, Weisburg, W.,Paster, B. J., Madigan, M. T.,et al. (1984) The phylogeny of purple bacteria: the alpha subdivision. Systematic and AppliedMicrobiology, 5, 315-326.doi: 10.1016/S0723-2020(84)80034-X
[7] Suwanto, A. and Kaplan, S. (1989) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. Journal of Bacte-riology, 171, 5850-5859.
[8] Mackenzie, C., Choudhary, M., Larimer, F. W.,Predki, P. F., Stilwa-gen, S., et al. (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynthesis Research, 70, 19-41.doi: 10.1023/A:1013831823701
[9] Choudhary, M., Fu, Y. X., Mackenzie, C., and Kaplan, S. (2004) DNA sequence duplication in Rhodobacter sphaeroides 2.4.1: evidence of an ancient partnership between chromosome I and II. Journal of Bacteriology, 186, 2019-2027.doi: 10.1128/JB.186.7.2019-2027.2004
[10] Bavishi, A., Lin, L., Schroeder, K., Cho, H., Choudhary, M. (2010) Theprevalance of gene duplicationand their ancient origin in Rhodobacter sphaeroides 2.4.1. BMC Micro-biology, 10, 331.doi:10.1186/1471-2180-10-331
[11] Poggio, S., Ab-reu-Goodger, C., Fabela, S., Osorio, A., Dreyfus, G.,et al. (2007) A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphae-roides. Journal of Bacteriology, 189, 3208-3216.doi: 10.1128/JB.01681-06
[12] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Miller, W., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Re-search, 25, 3389-3402.doi: 10.1093/nar/25.17.3389
[13] Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004) Mauve: mul-tiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14, 1394-1403.doi: 10.1101/gr.2289704
[14] Edgar, R. C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.doi: 10.1093/nar/gkh340
[15] Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the controlregion of mitochrondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526.
[16] Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368-376.
[17] Roh, J. H., Smith, W. E., and Kaplan, S. (2004) Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4.1. Journal of Biological Chemistry, 279, 9146-9155.doi: 10.1074/jbc.m311608200
[18] Peters, A., Bavishi, A., Cho, H., and Choudhary, M. (2012) Evolutionary constraints and expression analysis of gene duplications in Rhodobacter sphaeroides 2.4.1. BMC Research Notes, 5, 192.doi:10.1186/1756-0500-5-192

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.