Spectrophotometric Complexation Studies of Some Transition and Heavy Metals with a New Pyridine Derivative Ligand and Application of It for Solid Phase Extraction of Ultratrace Copper and Determination by Flame Atomic Absorption Spectrometry

Abstract

A new pyridine derivative ligand, (E)-(Pyridine-2-ylmethylidene) ({2-(E)-(Pyridine-2-ylmethylidene) amino] ethyl} has been synthesized and kf value of it’s complexes with Cu2+, Ni2+, Cd2+, Zn2+, Co2+, Hg2+ and Ag+ has been determined spectrophometrically. The stability of the complexes to vary in acetonitrile solvent was in the order of Cu2+ > Ni2+ > Cd2+ > Zn2+ > Co2+ > Hg2+ > Ag+, thus because this ligand have good selectivity to copper ion, a simple, reliable and rapid method for preconcentration and determination of the ultratrace amount of copper using octadecyl silica membrane disk modified by this ligand, and determination by flame atomic absorption has been presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping reagent were optimized. Under optimum experimental conditions, the breakthrough volume is greater than 2000 ml with an enrichment factor of more than 400 and 0.054 μg×L?1 detection limit. The capacity of the membrane disks modified by 6 mg of the ligand has been found to be330.17 gof copper. The effects of various cationic interferences on the percent recovery of copper ion were studied. The method has been successfully applied for the determination of copper ion in different water samples.

Share and Cite:

M. Payehghadr, K. Shahbala and H. Shafikhani, "Spectrophotometric Complexation Studies of Some Transition and Heavy Metals with a New Pyridine Derivative Ligand and Application of It for Solid Phase Extraction of Ultratrace Copper and Determination by Flame Atomic Absorption Spectrometry," American Journal of Analytical Chemistry, Vol. 4 No. 1, 2013, pp. 1-7. doi: 10.4236/ajac.2013.41001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Ziessel, “Schiff-Based Bipyridine Ligands. Unusual Coordination Features and Mesomorphic Behaviour,” Coordination Chemistry Reviews, Vol. 216-217, 2001, pp. 195-223.
[2] P. A. Vigato and S. Tamburini, “The Challenge of Cyclic and Acyclic Schiff Bases and Related Derivatives,” Coordination Chemistry Reviews, Vol. 248, No. 17-20, 2004, pp. 1717-2128. doi:10.1016/j.cct.2003.09.003
[3] C. Janiak, “Engineering Coordination Polymers towards Applications,” Journal of the Chemical Society, Dalton Transactions, No. 14, 2003, pp. 2781-2804.
[4] C. M. Liu, R. G. Xiong, X. Z. You and Y. J. Liu, “Crystal Structure and Some Properties of a Novel Potent Cu2Zn2SOD Model Schiff Base Copper (II) Complex [Cu(bppn)](ClO4)2.2H2O,” Polyhedron, Vol. 15, No. 24, 1996, pp. 4565-4571. doi:10.1016/0277-5387(96)00163-5
[5] J. Szklarzewicz, A. Samotus, J. Burgess, J. Fawcett and D. R. Russell, “Structural and Spectroscopic Characterization of a Dicyanooxomolybdenum(IV) Complex with a Tetradentate Schiff-Base Ligand,” Journal of the Chemical Society, Dalton Transactions, No. 18, 1995, pp. 3057-3061. doi:10.1039/dt9950003057
[6] S. Gourbatsis, S. P. Perlepes, I. S. Butler and N. Hadjiliadis, “Zinc(II) Complexes Derived from the di-Schiff-Base Ligand N,N′-Bis[1-(Pyridin-2-yl)Ethylidene] Ethane- 1,2-Diamine (LA) and Its Hydrolytic-cleavage Product N-[1-pyridin-2-yl)Ethylidene]Ethane-1,2-Diamine (L): Preparation, Characterization and Crystal Structure of the 5-Coordinate Species [ZnLCl2],” Polyhedron, Vol. 18, No. 18, 1999, pp. 2369-2375. doi:10.1016/S0277-5387(99)00141-2
[7] P. K. Bowyer, K. A. Porter, A. D. Rae, A. C. Willis and S. B. Wild, “From Helicate to Infinite Coordination Polymer: Crystal and Molecular Structures of Silver(I) Complexes of Readily Prepared di-Schiff Bases,” Journal of the Chemical Society, Chemical Communications, No. 10, 1998, pp. 1153-1154.
[8] R. G. Pearson, “The HSAB Principle—More Quantitative Aspects,” Inorganica Chimica Acta, Vol. 240, No. 1-2, 1995, pp. 93-98. doi:10.1016/0020-1693(95)04648-8
[9] Y. Yamini, J. Hassan and M. H. Karbasi, “Solid-Phase Extraction of Copper with Cupron on Octadecyl Silica Cartridge and Its Determination with Atomic Absorption,” Microchimica Acta, Vol. 148, No. 3-4, 2004, pp. 305-309. doi:10.1007/s00604-004-0259-6
[10] P. Hashemi, S. Bagheri and M. R. Fat’hi, “Factorial Design for Optimization of Experimental Variables in Preconcentration of Copper by a Chromotropic Acid Loaded Q-Sepharose Adsorbent,” Talanta, Vol. 68, No. 1, 2005, pp. 72-78. doi:10.1016/j.talanta.2005.04.058
[11] P. Ashtari, K. Wang, X. Yang, S. Huang and Y. Yamini, “Novel Separation and Precon-centration of Trace Amounts of Copper(II) in Water Samples Based on Neocuproine Modified Magnetic Microparticles,” Analytica Chimica Acta, Vol. 550, No. 1-2, 2005, pp. 18-23. doi:10.1016/j.aca.2005.06.048
[12] R. J. Cassella, O. I. B. Magalh?es, M. T. Couto, E. L. S. Lima, M. A. F. S. Neves and F. M. B. Coutinho, “Synthesis and Application of a Functionalized Resin for Flow Injection/F AAS Copper Determination in Waters,” Talanta, Vol. 67, No. 1, 2005, pp. 121-128. doi:10.1016/j.talanta.2005.02.019
[13] O. Acar, “Determination of Cadmium, Copper and Lead in Soils, Sediments and Sea Water Samples by ETAAS Using a Sc + Pd + NH4NO3 Chem-ical Modifier,” Talanta, Vol. 65, No. 3, 2005, pp. 672-677. doi:10.1016/j.talanta.2004.07.035
[14] J. Y. Cabon, “Determination of Cu and Mn in Seawater by Graphite Furnace Atomic Absorption Spectrometry with the Use of Hydrofluoric Acid as a Chemical Modifier,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 57, No. 5, 2002, pp. 939-950.
[15] P. Rumori and V. Cerdà, “Reversed Flow Injection and Sandwich Sequential Injection Methods for the Spectrophotometric Determination of Copper(II) with Cuprizone,” Analytica Chimica Acta, Vol. 486, No. 2, 2003, pp. 227-235. doi:10.1016/S0003-2670(03)00493-8
[16] J. J. Pinto, C. Moreno and M. Garc??a-Vargas, “A Very Sensitive Flow System for the Direct Determination of Copper in Natural Waters Based on Spectrophotometric Detection,” Talanta, Vol. 64, No. 2, 2004, pp. 562-565. doi:10.1016/j.talanta.2004.03.009
[17] S. Meseguer-Lioret, P. Camp??ns-Falcó, S. Cárdenas, M. Gallego and M. Valcárcel, “FI Automatic Method for the Determination of Copper(II) Based on Coproporphyrin I–Cu(II)/TCPO/H2O2 Chemiluminescence Reaction for the Screening of Waters,” Talanta, Vol. 64, No. 4, 2004, pp. 1030-1035. doi:10.1016/j.talanta.2004.05.004
[18] Z. Szigeti, I. Bitter, K. Toth, C. Latkoczy, D. J. Fliegel, D. Günther and E. Pretsch, “A Novel Polymeric Membrane Electrode for the Potentiometric Analysis of Cu2+ in Drinking Water,” Analytica Chimica Acta, Vol. 532, No. 2, 2005, pp. 129-136. doi:10.1016/j.aca.2004.10.061
[19] M. P. Hurst and K. W. Bruland, “The Use of Nafion-Coated Thin Mercury Film Electrodes for the Determination of the Dissolved Copper Speciation in Estuarine Water,” Analytica Chimica Acta, Vol. 546, No. 1, 2005, pp. 68-78. doi:10.1016/j.aca.2005.05.015
[20] P. Bermejo-Barrera, A. Moreda-Pineiro, R. Gonzalez-Iglesias and A. Bermejo-Barrera, “Multivariate Optimization of Solvent Extraction with 1,1,1-Trifluoroacety- lacetonates for the Determination of Total and Labile Cu and Fe in River Surface Water by Flame Atomic Absorption Spectrometry,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 57, No. 12, 2002, pp. 1951-1966.
[21] M. P. Hurst and K. W. Bruland, “The Use of Nafion-Coated Thin Mercury Film Electrodes for the Determination of the Dissolved Copper Speciation in Estuarine Water,” Analytica Chimica Acta, Vol. 546, No. 1, 2005, pp. 68-78. doi:10.1016/j.aca.2005.05.015
[22] S. Scaccia, G. Zappa and N. Basili, “Ion Chromatographic Preconcentration of Cu and Cd from Ultra-High-Purity Water and Determination by Elec-trothermal Atomic Absorption Spectrometry,” Journal of Chromatography A, Vol. 915, No. 1-2, 2001, pp. 167-175. doi:10.1016/S0021-9673(01)00642-2
[23] E. Kendüzler and A. R. Türker, “Atomic Absorption Spectrophotometric Determination of Trace Copper in Waters, Aluminium Foil and Tea Samples after Preconcentration with 1-Nitroso-2-Naphthol-3,6-Disulfonic Acid on Ambersorb 572,” Analytica Chimica Acta, Vol. 480, No. 2, 2003, pp. 259-266. doi:10.1016/S0003-2670(03)00024-2
[24] V. A. Lemos and P. X. Baliza, “Amberlite XAD-2 Functionalized with 2-Aminothiophenol as a New Sorbent for On-Line Preconcen-tration of Cadmium and Copper,” Talanta, Vol. 67, No. 3, 2005, pp. 564-570. doi:10.1016/j.talanta.2005.03.012
[25] U. Divrikli, A. A. Kartal, M. Soylak and L. Elci, “Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) Ions in Environmental Samples by Membrane Filtration Prior to Their Flame Atomic Absorption Spectrometric Determinations,” Journal of Hazardous Materials, Vol. 145, No. 3, 2007, pp. 459-464. doi:10.1016/j.jhazmat.2006.11.040
[26] M. Ghaedi, K. Niknam, A. Shokrollahi, E. Niknam, H. R. Rajabi and M. Soylak, “Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Heavy Metal Ions after Solid Phase Extraction Using Modified Sodium Dodecyl Sulfate Coated on Alumina,” Journal of Hazardous Materials, Vol. 155, No. 1-2, 2008, pp. 121- 127. doi:10.1016/j.jhazmat.2007.11.038
[27] A. B. Tabrizi and J. H. Mater. “Development of a Cloud Point Extraction-Spectrofluorimetric Method for Trace Copper(II) Determination in Water Samples and Parenteral Solutions,” Journal of Hazardous Materials, Vol. 139, No. 2, 2007, pp. 260-264.
[28] M. Shamsipur, A. R. Ghiasvand and Y. Yamini, “Solid- Phase Extraction of Ultratrace Uranium(VI) in Natural Waters Using Octadecyl Silica Membrane Disks Modified by Tri-n-octylphosphine Oxide and Its Spectrophotometric Determination with Dibenzoylmethane,” Analytical Chemistry, Vol. 71, No. 21, 1999, pp. 4892-4897. doi:10.1021/ac981229o
[29] A. R. Khorrami, T. Hashempur, A. Mahmoudi and A. R. Karimi, “Determination of Ultra Trace Amounts of Cobalt and Nickel in Water Samples by Inductively Coupled Plasma-Optical Emission Spectrometry after Pre-concentration on Modified C18-Silica Extraction Disks,” Microchemical Journal, Vol. 84, No. 1-2, 2006, pp. 75-79. doi:10.1016/j.microc.2006.04.008
[30] A. R. Khorrami, H. Naeimi and A. R. Fakhari, “Determination of Nickel in Natural Waters by FAAS after Sorption on Octadecyl Silica Membrane Disks Modified with a Recently Synthesized Schiff’s Base,” Talanta, Vol. 64, No. 1, 2004, pp. 13-17. doi:10.1016/j.talanta.2003.10.057
[31] Y. Yamini, N. Alizadeh and M. Shamsipur, “Solid Phase Extraction and Determination of Ultra Trace Amounts of Mercury(II) Using Octadecyl Silica Membrane Disks Modified by Hexathia-18-Crown-6-Tetraone and Cold Vapour Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 355, No. 1, 1997, pp. 69-73. doi:10.1016/S0003-2670(97)81613-3
[32] M. Shamsipur, A. Avanes, M. K. Rofouei, H. Sharghi, Gh. Aghapour, “Solid Phase Extraction and Determination of Ultra Trace Amounts of Copper(II) Using Octadecyl Silica Membrane Disks Modified by 11-Hydroxynaphthacene-5,12-Quinone and Flame Atomic Absorption Spectrometry,” Talanta, Vol. 54, No. 5, 2001, pp. 863-869. doi:10.1016/S0039-9140(01)00336-8
[33] M. Payehghadr and R. Heidari, Conductometric studies of the thermodynamics complexation of Li+, Na+, K+, Mg2+ and Ba2+ Ions with 4',4''(5'')-Di-Tert-Butyldibenzo-18- Crown-6 Ligand in Aceto-nitrile, Ethanol and Methanol Solutions,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, In Press.
[34] M. Payehghadr, A. Zamani, A. R. S. Sadaghiani and M. Taghdiri, “Spectrophotometric and Conductometric Studies of the Thermodynamics Complexation of Zn2+, Ni2+, Co2+, Pb2+ and Cu2+ Ions with 1,13-Bis(8-Quinolyl)-1,4, 7,10,13-Pentaoxatridecane Ligand in Acetonitrile Solution,” Journal of Inclusion Pheno-mena and Macrocyclic Chemistry, Vol. 62, No. 3-4, 2008, pp. 255-261. doi:10.1007/s10847-008-9465-x
[35] V. A. Nicely and J. L. Dye, “General Purpose Curve Fitting Program for Class and Research Use,” Journal of Chemical Education, Vol. 48, No. 7, 1971, pp. 443-447. doi:10.1021/ed048p443
[36] M. Payehghadr, M. K. Rofouei, A. Morsali and M. Shamsipur, “Structural and Solution Studies Novel Tetranuclear Silver(I) Cluster of [1,3-di(2-Methoxy)Benzene] Triazene,” Inorganica Chimica Acta, Vol. 360, No. 6, 2007, pp. 1792-1798. doi:10.1016/j.ica.2006.09.015
[37] M. Shamsipur, A. R. Ghiasvand, H. Sharghi and H. Naeimi, “Solid Phase Extraction of Ultra Trace Copper(II) Using Octadecyl Silica Membrane Disks Modified by a Naphthol-Derivative Schiff’s Base,” Analytica Chimica Acta, Vol. 408, No. 1-2, 2000, pp. 271-277. doi:10.1016/S0003-2670(99)00873-9
[38] F. Poole, S. K. Poole, D. S. Seibert and C. M. Champman, “Determination of Kinetic and Retention Properties of Cartridge and Disk Devices for Solid-Phase Extraction,” Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 689, No. 1, 1997, pp. 245-259. doi:10.1016/S0378-4347(96)00282-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.