Share This Article:

Influence of a Static Magnetic Field on Beam Emittance in Laser Wakefield Acceleration

Abstract Full-Text HTML Download Download as PDF (Size:2426KB) PP. 1991-1997
DOI: 10.4236/jmp.2012.312249    3,972 Downloads   5,960 Views   Citations

ABSTRACT

The enhancement of trapping and the optimization of beam quality are two key issues of Laser Wakefield Acceleration (LWFA). The effect of a homogenous constant magnetic field B0, parallel to the direction of propagation of the pump pulse, is studied in the blowout regime via 2Dx3Dv Particle-In-Cell simulations. Electrons are injected into the wake using a counter-propagating low amplitude laser. Transverse currents are generated at the rim of the bubble, which results in the amplification of the B0 field at the rear of the bubble. Therefore the dynamics of the beam is modified, the main effect is the reduction of the transverse emittance when B0 is raised. Depending on beam loading effects the low energy tail, observed in the non-magnetized case, can be suppressed when B0 is applied, which provides a mono-energetic beam.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Drouin, A. Bourdier, Q. Harry and S. Rassou, "Influence of a Static Magnetic Field on Beam Emittance in Laser Wakefield Acceleration," Journal of Modern Physics, Vol. 3 No. 12, 2012, pp. 1991-1997. doi: 10.4236/jmp.2012.312249.

References

[1] T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Physical Review Letters, Vol. 43, No. 4, 1979, pp. 267-270. doi:10.1103/PhysRevLett.43.267
[2] E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting and P. Sprangle, “Electron Injection into Plasma Wakefields by Colliding Laser Pulses,” Physical Review Letters, Vol. 79, No. 14, 1997, pp. 2682-2685. doi:10.1103/PhysRevLett.79.2682
[3] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy and V. Malka, “A Laser-Plasma Accelerator Producing Monoenergetic Electron Beams,” Nature, Vol. 431, No. 7008, 2004, pp. 541-544. doi:10.1038/nature02963
[4] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszinski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton and K. Krushelnick, “Monoenergetic Beams of Relativistic Electrons from Intense Laser-plasma Interactions,” Nature, Vol. 431, No. 7008, 2004, pp. 535-538. doi:10.1038/nature02939
[5] J. B. Rosenzweig, B. Breizman, T. Katsouleas and J. J. Su, “Acceleration and Focusing of Electrons in Two Dimensional Nonlinear Plasma Wakefields,” Physical Review A, Vol. 44, No. 10, 1991, pp. R6189-R6192. doi:10.1103/PhysRevA.44.R6189
[6] W. Lu, C. Huang, M. Zhou, W. B. Mori and T. Katsouleas, “Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime,” Physical Review Letters, Vol. 96, No. 16, 2006, pp. 165002-1-165002-4. doi:10.1103/PhysRevLett.96.165002
[7] A. Pukhov and J. Meyer-ter-Vehn, “Laser Wakefield Acceleration: The Highly Non-Linear Broken-Wave Regime,” Applied Physics B, Vol. 74, No. 4-5, 2002, pp. 355-361. doi:10.1007/s003400200795
[8] S. Gordienko and A. Pukhov, “Scalings for Ultrarelativistic Laser Plasmas and Quasimono Energetic Electrons,” Physics of Plasmas, Vol. 12, No. 4, 2005, pp. 043109-1- 043109-11.
[9] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec and V. Malka, “Controlled Injection and Acceleration of Electrons in Plasma Wakefields by Colliding Laser Pulses,” Nature, Vol. 444, No. 7120, 2006, pp. 737-739. doi:10.1038/nature05393
[10] X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, A. Lifschitz and V. Malka, “Simulation of Quasimonoenergetic Electron Beams Produced by Colliding Pulse Wakefield Acceleration,” Physics of Plasmas, Vol. 15, No. 11, 2008, pp. 113102-1-113102-11. doi:10.1063/1.3008051
[11] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca and L. O. Silva, “Generating Multi-GeV Electron Bunches Using Single Stage Laser Wake-field Acceleration in a 3D Nonlinear Regime,” Physical Review Special Topics—Accelerators and Beams, Vol. 10, No. 6, 2007, pp. 061301-1-061301-12. doi:10.1103/PhysRevSTAB.10.061301
[12] M. S. Hur, D. N. Gupta and H. Suk, “Enhanced ELectron Trapping by a Static Longitudinal Magnetic Field in Laser Wakefield Acceleration,” Physics Letters A, Vol. 372, No. 15, 2008, pp. 2684-2687. doi:10.1016/j.physleta.2007.12.045
[13] J. Vieira, S. F. Martins, V. B. Pathak, R. A. Fonseca, W. B. Mori and L. O. Silva, “Magnetic Control of Particle Injection in Plasma Based Accelerators,” Physical Review Letters, Vol. 106, No. 22, 2011, pp. 225001-1-225001-4. doi:10.1103/PhysRevLett.106.225001
[14] S. F. Martins, R. A. Fonseca, W. Lu, W. B. Mori and L. O. Silva, “Exploring Laser-Wakefield-Accelerator Regimes for Near-Term Lasers Using Particle-in-Cell Simulation in Lorentz-Boosted Frames,” Nature Physics, Vol. 6, No. 4, 2010, pp. 311-316. doi:10.1038/nphys1538
[15] A. Lagutin, K. Rosseel, F. Herlach, J. Vanacken and Y. Bruynseraede, “Development of Reliable 70 T Pulsed Magnets,” Measurement Science and Technology, Vol. 14, No. 12, 2003, p. 2144. doi:10.1088/0957-0233/14/12/015
[16] S. Zherlitsyn, T. Herrmannsdorfer, B. Wustmann and J. Wosnitza, “Design and Performance of Non-Destructive Pulsed Magnets at the Dresden High Magnetic Field Laboratory,” IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 2010, pp. 672-675. doi:10.1109/TASC.2010.2044158
[17] K. Floettmann, “Some Basic Features of the Beam Emittance,” Physical Review Special Topics—Accelerators and Beams, Vol. 6, No. 3, 2003, pp. 034202-1-034202-7. doi:10.1103/PhysRevSTAB.6.034202
[18] X. Davoine, E. Lefebvre, C. Rechatin, J. Faure and V. Malka, “Cold Optical Injection Producing Monoenergetic, Multi-GeV Electron Bunches,” Physical Review Letters, Vol. 102, No. 6, 2009, pp. 065001-1-065001-4. doi:10.1103/PhysRevLett.102.065001

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.