Elements Content in Otolith as Pollution Indicator for Cultured Sea Bass (Lates calcarifer) of Malaysia

Abstract

Otoliths of cultured sea bass and ambient waters were sampled from 24 fish cages and ponds in Malaysia to investigate the contents of Sr, Mg, Ba, Cd and Zn. The following elements content in otolith and water were analysed with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and/or Atomic Absorption Spectrometer (AAS) to determine the anthropogenic impacts based on the grouping characterisation of the sampling locations. Three groups i.e. A, B and C were characterised according to the least, intermediate and high anthropogenic impact to otolith elemental content. The Enrichment Factor (EF) and Metal Pollution Index (MPI) were calculated to determine the pollution source and level. The content of Ba in otolith was found positively related with the salinity variation and Ba content in water. Elevated content of Zn in otolith and water was found in group A suggesting that oil leaking from tourist boating activities effects exceed the urbanisation and industrialisation impact. EFznsupport the enrichment of Zn in waters which exceed the recommended level. MPI showed that group A > C > B and support that tourism activities affect the pollution level and indicate otolith functioned as pollution indicator. Highest EFcdsuggested Cd incorporation onto otolith despite of the low content of Cd in water. The sequence of the elements content in otolith and water are Sr > Mg > Zn > Ba > Cd and Sr > Mg > Ba > Zn > Cd respectively.

Share and Cite:

A. Sarimin and C. Mohamed, "Elements Content in Otolith as Pollution Indicator for Cultured Sea Bass (Lates calcarifer) of Malaysia," Journal of Environmental Protection, Vol. 3 No. 12, 2012, pp. 1689-1703. doi: 10.4236/jep.2012.312184.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. G. Tan and C. K. Yap, “Biochemical and Molecular Indicators in Aquatic Ecosystems: Current Status and Further Applications in Malaysia,” Aquatic Ecosystem Health & Management, Vol. 9, No. 2, 2006, pp. 227-236. doi:10.1080/14634980600713620
[2] A. B. Jaafar, “Wastewater Management in Malaysia,” ICLARM Conference Proceedings 33, Phillippines, Ministry of the Environment, and Canada-ASEAN Centre, Singapox; Asian Development Bank, and International Center for Living Aquatic Resources Management, Philippines. 1992.
[3] A. Ismail and M. I. N. Asmah, “Copper, Zinc, Lead and Cadmium in Intertidal Molluscs and Sediment off Seberang Perai Coastline, Malaysia,” 4th Princess Chulabhorn International Science Congress, Bangkok, 1999.
[4] A. Ismail, B. A. G. Idris and R. Sukal, “Distribution of Heavy Metals in Sedminet of Port Kelang,” Proceedings of 12th Anniversary Seminar Malaysian Society of Marine Sciences, Universiti Malaya, Kuala Lumpur, 1989.
[5] C. K. Yap, A. Ismail and S. G. Tan, “Heavy Metal (Cd, Cu, Pb and Zn) Concentrations in the Green-Lipped Mussel Pernaviridis (Linnaeus) Collected from Some Wild and Aquacultural Sites in the West Coast of Peninsular Malaysia,” Food Chemistry, Vol. 84, No. 4, 2004, pp. 569-575. doi:10.1016/S0308-8146(03)00280-2
[6] L. Alam, “Radioecology of Polonium-210 and Content of Heavy Metals in Kapar Coastal Area and Risk Assesment of Seafood Consumption,” University Kebangsaan Malaysia, Bangi, 2012.
[7] D. A. Milton and S. R. Chenery, “Sources and Uptake of Trace Metals in Otoliths of Juvenile Barramundi (Lates calcarifer),” Journal of Experimental Marine Biology and Ecology, Vol. 264, No. 1, 2001, pp. 47-65. doi:10.1016/S0022-0981(01)00301-X
[8] D. Milton, I. Halliday, M. Sellin, R. Marsh, J. Staun ton-Smith and J. Woodhead, “The Effect of Habitat and Environmental History on Otolith Chemistry of Barra mundi Lates calcarifer in Estuarine Populations of a Regulated Tropical River,” Estuarine, Coastal and Shelf Science, Vol. 78, No. 2, 2008, pp. 301-315. doi:10.1016/j.ecss.2007.12.009
[9] S. E. Campana, “Chemistry and Compositions of Fish Otoliths: Pathways, Mechanism and Applications,” Marine Ecology Progress Series, Vol. 188, 1999, pp. 263 297. doi:10.3354/meps188263
[10] G. R. Hoff and L. A. Fuiman, “Environmentally Induced Variation in Elemental Composition of Red Drum Sciaenops ocellatus Otoliths,” Bulletin of Marine Science, Vol. 56, No. 2, 1995, pp. 578-591.
[11] A. S. Hicks, G. P. Closs and S. E. Swearer, “Otolith Microchemistry of Two Amphidromous Galaxiids across an Experimental Salinity Gradient: A Multi-Element Approach for Tracking Diadromous Migrations,” Journal of Experimental Marine Biology and Ecology, Vol. 394, No. 1-2, 2010, pp. 86-97. doi:10.1016/j.jembe.2010.07.018
[12] L. Castello and J. P. Castello, “Anchovy Stocks (Engraulis Anchoita) and Larval Growth in the Sw Atlantic,” Fisheries Research, Vol. 59, No. 3, 2003, pp. 409-421. doi:10.1016/S0165-7836(02)00014-0
[13] T. S. Elsdon and B. M. Gillanders, “Fish Otolith Chemis try Influenced by Exposure to Multiple Environmental Variables,” Journal of Experimental Marine Biology and Ecology, Vol. 313, No. 2, 2004, pp. 269-284. doi:10.1016/j.jembe.2004.08.010
[14] C. D. B. Leakey, M. J. Attrill and M. F. Fitzsimons, “Multi-Element Otolith Chemistry of Juvenile Sole (Solea solea), Whiting (Merlangius merlangus) and European Sea bass (Dicentrarchus labrax) in the Thames Estuary and Adjacent Coastal Regions,” Journal of Sea Research, Vol. 61, No. 4, 2009, pp. 268-274. doi:10.1016/j.seares.2008.12.002
[15] M. M. Ranaldi and M. M. Gagnon, “Zinc Incorporation in the Otoliths of Juvenile Pink Snapper (Pagrus Auratus Forster, The Influence of Dietary versus Waterborne Sources,” Journal of Experimental Marine Biology and Ecology, Vol. 360(1, 2008, pp. 56-62. doi:10.1016/j.jembe.2008.03.013
[16] M. M. Ranaldi and M. M. Gagnon, “Trace Metal Incorporation in Otoliths of Black Bream (Acanthopagrus butcheri Munro), an Indicator of Exposure to Metal Con tamination,” Water Air and Soil Pollution, Vol. 194, No. 1-4, 2008, pp. 31-43. doi:10.1007/s11270-008-9696-x
[17] S. R. Li, et al., “The Thermoluminescence of Carp Otoliths: A Fingerprint in Identification of Lake Pollution,” African Journal of Biotechnology, Vol. 10, No. 80, 2011, pp. 18440-18449. doi:10.5897/AJB11.2559
[18] A. R. Anwar and N. R. N. Husni, “Perancangan Pembangunan Sosio-Ekonomi Dan Perlancongan Untuk Kawasan Sekitar Kilim, Langkawi,” In: M. S. Leman, et al., Eds., Lembangan Kilim—Warisan Budaya Dan Sumber Asli Langkawi, Institut Alam Sekitar dan Pembangunan (LESTARI), 2005, pp. 3-11.
[19] H. L. Koh, “Permodelan Alam Sekitar Dan Ekosistem,” Universiti Sains Malaysia, Bangi, 2004.
[20] D. L. Grey, “An Overview of Lates calcarifer in Australia and Asia in Management of Wild and Cultured Sea Bass Barramundi (Lates calcarifer),” CIAR Proceedings, Vol. 20, 1987, pp. 24-30.
[21] T. K. Jan and D. R. Young, “Determination of Microgram Amounts of Some Transition Metals in Sea Water by Methyl Isobuthyl Ketone-Nitric Acid Successive Extraction and Flameless Atomic Absorption Spectrophotometry,” Analytical Chemistry, Vol. 50, No. 9, 1978, pp. 1250 1253. doi:10.1021/ac50031a014
[22] J. Farrell and S. E. Campana, “Regulation of Calcium and Strontium Deposition on the Otoliths of Juvenile Tilapia, Oreochromis Niloticus,” Comparative Biochemistry and Physiology Part A: Physiology, Vol. 115, No. 2, 1996, pp. 103-109. doi:10.1016/0300-9629(96)00015-1
[23] B. D. Walther and S. R. Thorrold, “Water, Not Food, Contributes the Majority of Strontium and Barium Deposited in the Otoliths of a Marine Fish,” Marine Ecology Progress Series, Vol. 311, 2006, pp. 125-130. doi:10.3354/meps311125
[24] M. J. Chowdhury and R. Blust, “Bioavailability of Waterborne Strontium to the Common Carp, Cyprinus Carpio, in Complexing Environments,” Aquatic Toxicology, Vol. 58, No. 3-4, 2002, pp. 215-227. doi:10.1016/S0166-445X(01)00230-2
[25] C. K. Yap, A. Ismail and S. G. Tan, “Background Con centrations of Cd, Cu, Pb and Zn in the Green-Lipped Mussel Perna Viridis (Linnaeus) from Peninsular Malaysia,” Marine Pollution Bulletin, Vol. 46, No. 8, 2003, pp. 1044-1048. doi:10.1016/S0025-326X(03)00163-2
[26] L. Giusti, A. C. Williamson and A. Mistry, “Biologically Available Trace Metals in Mytilus Edulis from the Coast of Northeast England,” Environment International, Vol. 25, No. 8, 1999, pp. 969-981. doi:10.1016/S0160-4120(99)00066-5
[27] G. E. Bath, et al., “Strontium and Barium Uptake in Ara gonitic Otoliths of Marine Fish,” Geochimica et Cosmo chimica Acta, Vol. 64, No. 10, 2000, pp. 1705-1714. doi:10.1016/S0016-7037(99)00419-6
[28] B. J. Alloway and D. C. Ayres, “Chemical Principles of Environmental Pollution,” Water, Air, & Soil Pollution, Vol. 102, No. 1, 1998, pp. 216-218. doi:10.1023/A:1004986209096
[29] F. D. Por, “Hydrobiological Notes on the High-Salinity Waters of the Sinai Peninsula,” Marine Biology, Vol. 14, No. 2, 1972, pp. 111-119. doi:10.1007/BF00373210
[30] S. T. Ooi, M. Mokhtar and I. Komoo, “Kualiti Air Sungai Kilim, Langkawi: Kajian Kes Bagi Pengurusan Bersepadu Sumber Air,” In: M. S. Leman, et al., Eds., Lembangan Kilim (Warisan Budaya Dan Sumber Asli), Institut Alam Sekitar dan Pembangunan (LESTARI), 2005, pp. 221-232.
[31] R. J. Cassella, et al., “Multivariate Optimization of the Determination of Zinc in Diesel Oil Employing a Novel Extraction Strategy Based on Emulsion Breaking,” Ana lytica Chimica Acta, Vol. 690, No. 1, 2011, pp. 79-85. doi:10.1016/j.aca.2011.01.059
[32] O. Mustaffa and Y. Ishak, “Kedinamikan Penduduk Dan Pembangunan Ekonomi Di Lembangan Kilim: Cabarannya Terhadap Kelestarian Alam Sekitar,” In: M. S. Leman, et al., Eds., Lembangan Kilim (Warisan Budaya Dan Sumber Asli), Institut Alam Sekitar dan Pembangunan (LESTARI), 2005, pp. 33-52.
[33] S. E. Campana, et al., “Otolith Elemental Fingerprints as Biological Tracers of Fish Stocks,” Fisheries Research, Vol. 46, No. 1-3, 2000, pp. 343-357. doi:10.1016/S0165-7836(00)00158-2
[34] H. Choudhury and R. Cary, “Concise International Chemical Assessment Document 33: Barium and Barium Compounds,” Geneva, 2001.
[35] S. A. Rahim, et al., “Geochemical Composition of Soils Developed from Different Parent Materials in Pulau Langkawi,” In: A. Norhayati, et al., Eds., Selat Kuah— Warisan Budaya Dan Sumber Asli Langkawi, Jabatan Perhutanan Malaysia, Institut Alam Sekitar dan Pembangunan (LESTARI), Lembaga Pembangunan Langkawi (LADA), 2007, pp. 220-226.
[36] A. Ghaemi, M. Torab-Mostaedi and M. Ghannadi-Maragheh, “Characterizations of Strontium(Ii) and Barium(Ii) Ad sorption from Aqueous Solutions Using Dolomite Powder,” Journal of Hazardous Materials, Vol. 190, No. 1-3, 2011, pp. 916-921. doi:10.1016/j.jhazmat.2011.04.006
[37] J. N. Lee and C. A. R. Mohamed, “Trace Metal Contents in the Porites Corals of Peninsular Malaysia,” International Journal of Environmental Research, Vol. 3, No. 1, 2009, pp. 85-94.
[38] W. M. R. Idris, et al., “Kandungan Logam Berat Di Dalam Sedimen Pantai Di Sekitar Pulau Langkawi,” In: A. Norhayati, et al., Eds., Selat Kuah—Warisan Budaya Dan Sumber Asli Langkawi, Jabatan Perhutanan Malaysia, Institut Alam Sekitar dan Pembangunan (LESTARI), Lembaga Pembangunan Langkawi (LADA), 2007, pp. 227 234.
[39] J. Krobthong, M. Rachakornkij and V. Sricharoenchaikul, “Distributions of Cr, Ni, Cu and Zn in Hazardous Waste Co-Processing in a Pilot-Scale Rotary Cement Kiln,” Journal of Applied Sciences, Vol. 12, No. 1, 2012, pp. 22 31. doi:10.3923/jas.2012.22.31
[40] M. M. Ranaldi and M. M. Gagnon, “Trace Metal Incorporation in Otoliths of Pink Snapper (Pagrus Auratus) as an Environmental Monitor,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Vol. 152, No. 3, 2010, pp. 248-255. doi:10.1016/j.cbpc.2010.04.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.