Adhesion of Gallibacterium anatis to Chicken Oropharyngeal Epithelial Cells and the Identification of Putative Fimbriae

Abstract

Microbial infections are typically initiated by the colonization of tissues by a specific mechanism that promotes adherence to host cells or tissues. In this work, we characterized the ability of Gallibacterium anatis F149T to express fimbriae that may be involved in mucosal attachment. Using transmission electron microscopy, the fimbriae-like structures could be observed on the surface of negatively stained G. anatis F149T, and these structures were further visualized after being released by physical shaking. When the fimbriae-like structures were separated by SDS-PAGE, the proteins comprising them were isolated and sized at 13 and 25 kDa. G. anatis F149T was able to adhere to chicken oropharyngeal epithelial cells. Adhesion could be completely inhibited by pretreatment of the bacterial cells with trypsin, whereas 25% inhibition was attained after pretreatment with an antiserum against the 13 kDa protein. We demonstrated by immuno-gold electron microscopy that the antibodies from the antiserum were specifically associated with the fimbria-like structures on G. anatis. These results indicated that G. anatis F149T expresses fimbriae that contribute to its adhesion to chicken oropharyngeal epithelial cells and may be important for colonization of the upper respiratory tract.

Share and Cite:

M. L. Salgado Lucio, S. Vaca, C. Vázquez, E. Zenteno, I. Rea, V. M. Pérez-Márquez and E. Negrete-Abascal, "Adhesion of Gallibacterium anatis to Chicken Oropharyngeal Epithelial Cells and the Identification of Putative Fimbriae," Advances in Microbiology, Vol. 2 No. 4, 2012, pp. 505-510. doi: 10.4236/aim.2012.24064.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Bojesen, S. S. Nielsen and M. Bisgaard, “Prevalence and Transmission of Haemolytic Gallibacterium Species in Chicken Production Systems with Different Biosecurity Levels,” Avian Patholology, Vol. 32, No. 5, 2003, pp. 503-510. doi:10.1080/0307945031000154107
[2] H. Christensen, M. Bisgaard, A. M. Bojesen, R. Mutters and J. E. Olsen, “Genetic Relationships among Avian Isolates Classified as Pasteurella haemolytica, Actinobacillus salpingitidis or Pasteurella anatis with Proposal of Gallibacterium anatis gen. nov., comb. nov. and Description of Additional Genomospecies within Gallibacterium gen. nov.,” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, No. 1, 2003, pp. 275-287. doi:10.1099/ijs.0.02330-0
[3] A. M. Bojesen and H. L. Shivaprasad, “Genetic Diversity of Gallibacterium Isolates from California Turkeys,” Avian Pathology Vol. 36, No. 3, 2007, pp. 227-230. doi:10.1080/03079450701332352
[4] M. Bisgaard, “Incidence of Pasteurella haemolytica in the Respiratory Tract of Apparently Healthy Chickens and Chickens with Infectious Bronchitis. Characterization of 213 Strains,” Avian Pathology, Vol. 6, No. 4, 1977, pp. 285-292. doi:10.1080/03079457708418238
[5] R. Mushin, Y. Weisman and N. Singer, “Pasteurella haemolytica Found in the Respiratory Tract of Fowl,” Avian Diseases, Vol. 24, No. 1, 1979, pp. 162-168. doi:10.2307/1589775
[6] P. B. Addo and K. Mohan, “Atypical Pasteurella haemolytica Type A from Poultry,” Avian Diseases, Vol. 29, No. 1, 1985, pp. 214-217. doi:10.2307/1590710
[7] C. Neubauer, M. De Souza-Pilz, A. M. Bojesen, M. Bisgaard and M. Hess, “Tissue Distribution of Haemolytic Gallibacterium anatis Isolates in Laying Birds with Reproductive Disorders,” Avian Pathology, Vol. 38, No. 1, 2009, pp. 1-7. doi:10.1080/03079450802577848
[8] E. Garcia-Gomez, S. Vaca, A. Perez-Mendez, J. Ibarra-Caballero, V. Perez-Marquez, V. R. Tenorio and E. Negrete-Abascal, “Gallibacterium anatis-Secreted Metallo Proteases Degrade Chicken IgG,” Avian Patholology, Vol. 34, No. 5, 2005, pp. 426-429. doi:10.1080/03079450500267866
[9] A. Zepeda, S. Ramírez, V. Vega, V. Morales, M. Talavera, C. Salgado-Miranda, J. Simon-Martinez, A. M. Bojesen and E. Soriano-Vargas, “Hemagglutinating Activity of Gallibacterium Strains,” Avian Diseases, Vol. 53, No. 1, 2009, pp. 115-118. doi:10.1637/8375-060908-ResNote.1
[10] B. M. Kristensen, D. Frees and A. M. Bojesen, “GtxA from Gallibacterium anatis, a Cytolytic RTX-Toxin with a Novel Domain Organization,” Veterinary Research, Vol. 41, No. 3, 2010, p. 25. doi:10.1051/vetres/2009073
[11] B. M. Kristensen, D. Frees and A. M. Bojesen, “Expression and Secretion of the RTX-Toxin GtxA among Members of the Genus Gallibacterium,” Veterinary Microbiolology, Vol. 153, No. 1-2, 2011, pp. 116-123. doi:10.1016/j.vetmic.2011.05.019
[12] S. Vaca, E. Monroy, L. Rojas, C. Vazquez, P. Sánchez, E. Soriano-Vargas, A. M. Bojesen and E. Negrete Abascal, “Adherence of Gallibacterium anatis to Inert Surfaces,” Journal of Animal Veterinary Advances, Vol. 10, No. 13, 2011, pp. 1688-1693. doi:10.3923/javaa.2011.1688.1693
[13] S. M. Kirov, K. Sanderson and T. C. Dickson, “Characterization of a Type IV Pilus Produced by Aeromonas caviae,” Journal of Medical Microbiology, Vol. 47, No. 6, 1998, pp. 527-531. doi:10.1099/00222615-47-6-527
[14] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature, Vol. 227, No. 5259, 1970, pp. 680-685. doi:10.1038/227680a0
[15] E. Negrete-Abascal, M. E. Reyes, R. M. Garcia, S. Vaca, J. A. Giron, O. Garcia, E. Zenteno and M. de la Garza, “Flagella and Motility in Actinobacillus pleuropneumoniae,” Journal of Bacteriology, Vol. 185, No. 2, 2003, pp. 664-668. doi:10.1128/JB.185.2.664-668.2003
[16] M. M. Levine, P. Ristaino, G. Marley, C. Smyth, S. Knutton, E. Boedeker, R. Black, C. Young, M. L. Clements, C. Cheney and R. Patnaik, “Coli Surface Antigens 1 and 3 of Colonization Factor Antigen II-Positive Enterotoxigenic Escherichia coli: Morphology, Purification, and Immune Responses in Humans,” Infection and Immunity, Vol. 44, No. 2, 1984, pp. 409-420.
[17] S. Vaca, G. O. Garcia and C. G .L. Paniagua, “The Lom Gene of Bacteriophage λ Is Involved in Escherichia coli K12 Adhesion to Human Buccal Epithelial Cells,” FEMS Microbiology Letters, Vol. 156, No. 1, 1997, pp. 129-132. doi:10.1111/j.1574-6968.1997.tb12717.x
[18] L. Craig, M. E. Pique and J. A. Tainer, “Type IV Pilus Structure and Bacterial Pathogenicity,” Nature Reviews Microbiology, Vol. 2, No. 5, 2004, pp. 363-378. doi:10.1038/nrmicro885
[19] L. Craig and J. Li, “Type IV Pili: Paradoxes in Form and Function,” Current Opinion in Structural Biology, Vol. 18, No. 2, 2008, pp. 267-277. doi:10.1016/j.sbi.2007.12.009
[20] R. Hamer-Barrera, D. Godínez, V. I. Enriquez, S. Vaca-Pacheco, R. Martinez-Zuniga, P. Talamas-Rohana, F. Suarez-Guemez and M. de la Garza, “Adherence of Actinobacillus pleuropneumoniae Serotype 1 to Swine Buccal Epithelial Cells Involves Fibronectin,” Canadian Journal of Veterinary Research, Vol. 68, No. 1, 2004, pp. 33-41.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.