Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

Abstract

Traumatic axonal injury is a progressive process evoked by shear forces on the brain, gradually evolving from focal axonal alteration and cumulating in neural disconnection. Clinical classifiers and conventional neuroimaging are limited in traumatic axonal injury detection, outcome prediction, and treatment guidance. Diffusion weighted imaging is an advanced magnetic resonance imaging (MRI) technique that is sensitive to the movement of water molecules, providing additional information on the micro-structural arrangement of tissue. Quantitative analysis of diffusion metrics can aid in the localization of axonal injury and/or de(dys)myelination caused by trauma. Diffusion MRI tractography is an extension of diffusion weighted imaging, and can provide additional information about white matter pathways and the integrity of brain neural networks. Both techniques are able to detect the early micro-structural changes caused by Traumatic Brain Injury (TBI), and can be used to increase understanding of the mechanisms of brain plasticity in recovery after brain injury and possibly optimize treatment planning of patients with Traumatic Brain Injury. This review focuses on the theoretical basis and applied advanced techniques of diffusion weighted imaging, their limitations and applications, and future directions in the application to TBI.

Share and Cite:

P. Yeh, T. Oakes and G. Riedy, "Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances," Open Journal of Medical Imaging, Vol. 2 No. 4, 2012, pp. 137-161. doi: 10.4236/ojmi.2012.24025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Ling, F. Bandak, R. Armonda, G. Grant and J. Ecklund, “Explosive Blast Neurotrauma,” Journal of Neurotrauma, Vol. 26, No. 6, 2009, pp. 815-825. doi:10.1089/neu.2007.0484
[2] Y. C. Chen, D. H. Smith and D. F. Meaney, “In Vitro Approaches for Studying Blast-Induced Traumatic Brain Injury,” Journal of Neurotrauma, Vol. 26, No. 6, 2009, pp. 861-876. doi:10.1089/neu.2008.0645
[3] J. E. Kennedy, F. O. Leal, J. D. Lewis, M. A. Cullen and R. R. Amador, “Posttraumatic Stress Symptoms in OIF/ OEF Service Members with Blast-Related and Non-BlastRelated Mild TBI,” NeuroRehabilitation, Vol. 26, No. 3, 2010, pp. 223-231.
[4] C. L. Mac Donald, A. M. Johnson, D. Cooper, et al., “Detection of Blast-Related Traumatic Brain Injury in US Military Personnel,” The New England Journal of Medicine, Vol. 364, No. 22, 2011, pp. 2091-2100. doi:10.1056/NEJMoa1008069
[5] J. H. Adams, D. Doyle, I. Ford, et al., “Diffuse Axonal Injury in Head Injury: Definition, Diagnosis and Grading,” Histopathology, Vol. 15, No. 1, 1989, pp. 49-59. doi:10.1111/j.1365-2559.1989.tb03040.x
[6] Y. Ezaki, K. Tsutsumi, M. Morikawa and I. Nagata, “Role of Diffusion-Weighted Magnetic Resonance Imaging in Diffuse Axonal Injury,” Acta Radiologicaogica, Vol. 47, No. 7, 2006, pp. 733-740. doi:10.1080/02841850600771486
[7] T. H. Le and A. D. Gean, “Neuroimaging of Traumatic Brain Injury,” Mount Sinai Journal of Medicine, Vol. 76, No. 2, 2009, pp. 145-162. doi:10.1002/msj.20102
[8] H. Lee, M. Wintermark, A. D. Gean, et al., “Focal Lesions in Acute Mild Traumatic Brain Injury and Neurocognitive Outcome: CT versus 3T MRI,” Journal of Neurotrauma, Vol. 25, No. 9, 2008, pp. 1049-1056. doi:10.1089/neu.2008.0566
[9] R. Scheid, K. Walther, T. Guthke, C. Preul and D. Y. von Cramon, “Cognitive Sequelae of Diffuse Axonal Injury,” Archives of Neurology, Vol. 63, No. 3, 2006, pp. 418-424. doi:10.1001/archneur.63.3.418
[10] E. D. Bigler, “Neuropsychology and Clinical Neuroscience of Persistent Post-Concussive Syndrome,” Journal of the International Neuropsychological Society, Vol. 14, No. 1, 2008, pp. 1-22. doi:10.1017/S135561770808017X
[11] C. Konrad, A. J. Geburek, F. Rist, et al., “Long-Term Cognitive and Emotional Consequences of Mild Traumatic Brain Injury,” Psychological Medicine, Vol. 41, No. 6, 2011, pp. 1197-1211.
[12] T. M. Talavage, E. Nauman, E. L. Breedlove, et al., “Functionally-Detected Cognitive Impairment in High School Football Players without Clinically-Diagnosed Concussion,” Journal of Neurotrauma, 1 October 2010. doi:10.1089/neu.2010.1512
[13] A. Messe, S. Caplain, G. Paradot, et al., “Diffusion Tensor Imaging and White Matter Lesions at the Subacute Stage in Mild Traumatic Brain Injury with Persistent Neurobehavioral Impairment,” Human Brain Mapping, Vol. 32, No. 6, 2011, pp. 999-1011. doi:10.1002/hbm.21092
[14] B. Jennett, J. H. Adams, L. S. Murray and D. I. Graham, “Neuropathology in Vegetative and Severely Disabled Patients after Head Injury,” Neurology, Vol. 56, No. 4, 2001, pp. 486-490. doi:10.1212/WNL.56.4.486
[15] A. Costanza, K. Weber, S. Gandy, et al., “Review: Contact Sport-Related Chronic Traumatic Encephalopathy in the Elderly: Clinical Expression and Structural Substrates,” Neuropathology and Applied Neurobiology, Vol. 37, No. 6, 2011, pp. 570-584. doi:10.1111/j.1365-2990.2011.01186.x
[16] P. M. Parizel, ?. ?zsarlak, J. W. Van Goethem, et al., “Imaging Findings in Diffuse Axonal Injury after Closed Head Trauma,” European Radiology, Vol. 8, No. 6, 1998, pp. 960-965. doi:10.1007/s003300050496
[17] P. M. Parizel, J. W. Van Goethem, ?. ?zsarlak, M. Maes and C. D. Phillips, “New Developments in the Neuroradiological Diagnosis of Craniocerebral Trauma,” European Radiology, Vol. 15, No. 3, 2005, pp. 569-581. doi:10.1007/s00330-004-2558-z
[18] L. R. Gentry, J. C. Godersky and B. H. Thompson, “Traumatic Brain Stem Injury: MR Imaging,” Radiology, Vol. 171, No. 1, 1989, pp. 177-187.
[19] J. R. Hesselink, C. F. Dowd, M. E. Healy, et al., “MR Imaging of Brain Contusions: A Comparative Study with CT,” American Journal of Roentgenology, Vol. 150, No. 5, 1988, pp. 1133-1142.
[20] L. R. Gentry, J. C. Godersky and B. Thompson, “MR Imaging of Head Trauma: Review of the Distribution and Radiopathologic Features of Traumatic Lesions,” American Journal of Roentgenology, Vol. 150, No. 3, 1988, pp. 663-672.
[21] D. Gadda, L. Carmignani, L. Vannucchi and A. Bindi, “Traumatic Lesions of Corpus Callosum: Early Multidetector CT Findings,” Neuroradiology, Vol. 46, No. 10, 2004, pp. 812-816. doi:10.1007/s00234-004-1250-y
[22] F. Tomaiuolo, G. A. Carlesimo, M. Di Paola, et al., “Gross Morphology and Morphometric Sequelae in the Hippocampus, Fornix, and Corpus Callosum of Patients with Severe Non-Missile Traumatic Brain Injury without Macroscopically Detectable Lesions: A T1 Weighted MRI Study,” Journal of Neurology, Neurosurgery & Psychiatry, Vol. 75, No. 9, 2004, pp. 1314-1322. doi:10.1136/jnnp.2003.017046
[23] Y. Yanagawa, Y. Itoh, T. Sakamoto, Y. Okada and A. M. Tokumaru, “Post-Traumatic Mutism Caused by Corpus Callosum Injury Diagnosed by Fluid-Attenuated Inversion Recovery on Magnetic Resonance Imaging,” The Journal of Trauma, Vol. 58, No. 3, 2005, pp. 631-633. doi:10.1097/01.TA.0000075801.73762.1B
[24] E. A. Wilde, Z. Chu, E. D. Bigler, et al., “Diffusion Tensor Imaging in the Corpus Callosum in Children After moderate to Severe Traumatic Brain Injury,” Journal of Neurotrauma, Vol. 23, No. 10, 2006, pp. 1412-1426. doi:10.1089/neu.2006.23.1412
[25] D. R. Rutgers, P. Fillard, G. Paradot, et al., “Diffusion Tensor Imaging Characteristics of the Corpus Callosum in mild, Moderate, and Severe Traumatic Brain Injury,” American Journal of Neuroradiology, Vol. 29, No. 9, 2008, pp. 1730-1735. doi:10.3174/ajnr.A1213
[26] D. C. Viano, I. R. Casson, E. J. Pellman, et al., “Concussion in Professional Football: Brain Responses by Finite Element Analysis: Part 9,” Neurosurgery, Vol. 57, No. 5, 2005, pp. 891-916.
[27] T. Hortobagyi, S. Wise, N. Hunt, et al., “Traumatic Axonal Damage in the Brain Can Be Detected Using BetaAPP Immunohistochemistry within 35 Min after Head Injury to Human Adults,” Neuropathology and Applied Neurobiology, Vol. 33, No. 2, 2007, pp. 226-237. doi:10.1111/j.1365-2990.2006.00794.x
[28] M. Inglese, S. Makani, G. Johnson, et al., “Diffuse Axonal Injury in Mild Traumatic Brain Injury: A Diffusion Tensor Imaging Study,” Journal of Neurosurgery, Vol. 103, No. 2, 2005, pp. 298-303. doi:10.3171/jns.2005.103.2.0298
[29] R. Scheid, C. Preul, O. Gruber, C. Wiggins and D. Y. von Cramon, “Diffuse Axonal Injury Associated with Chronic Traumatic Brain Injury: Evidence from T2*-Weighted Gradient-Echo Imaging at 3 T,” American Journal of Neuroradiology, Vol. 24, No. 6, 2003, pp. 1049-1056.
[30] W. W. Orrison, E. H. Hanson, T. Alamo, et al., “Traumatic Brain Injury: A Review and High-Field MRI Findings in 100 Unarmed Combatants Using A LiteratureBased Checklist Approach,” Journal of Neurotrauma, Vol. 26, No. 5, 2009, pp. 689-701. doi:10.1089/neu.2008.0636
[31] E. M. Haacke, Y. Xu, Y. C. Cheng and J. R. Reichenbach, “Susceptibility Weighted Imaging (SWI),” Magnetic Resonance in Medicine, Vol. 52, No. 3, 2004, pp. 612-618. doi:10.1002/mrm.20198
[32] K. A. Tong, S. Ashwal, A. Obenaus, et al., “Susceptibility-Weighted MR Imaging: A Review of Clinical Applications in Children,” American Journal of Neuroradiology, Vol. 29, No. 11, 2008, pp. 9-17. doi:10.3174/ajnr.A0786
[33] K. Kasahara, K. Hashimoto, M. Abo and A. Senoo, “Voxeland Atlas-Based Analysis of Diffusion Tensor Imaging May Reveal Focal Axonal Injuries in Mild Traumatic Brain Injury—Comparison with Diffuse Axonal Injury,” Magnetic Resonance Imaging, Vol. 30, No. 4, 2012, pp. 495-505. doi:10.1016/j.mri.2011.12.018
[34] M. Matsushita, K. Hosoda, Y. Naitoh, H. Yamashita and E. Kohmura, “Utility of Diffusion Tensor Imaging in the Acute Stage of Mild to Moderate Traumatic Brain Injury for Detecting White Matter Lesions and Predicting LongTerm Cognitive Function in Adults.” Journal of Neurosurgery, Vol. 115, No. 1, 2011, pp. 130-139. doi:10.3171/2011.2.JNS101547
[35] A. R. Mayer, J. Ling, M. V. Mannell, et al., “A Prospective Diffusion Tensor Imaging Study in Mild Traumatic Brain Injury,” Neurology, Vol. 74, No. 8, 2010, pp. 643650. doi:10.1212/WNL.0b013e3181d0ccdd
[36] H. S. Wortzel, M. F. Kraus, C. M. Filley, C. A. Anderson and D. B. Arciniegas, “Diffusion Tensor Imaging in Mild Traumatic Brain Injury Litigation,” The Journal of the American Academy of Psychiatry and the Law, Vol. 39, No. 4, 2011, pp. 511-523.
[37] R. T. Lange, G. L. Iverson, J. R. Brubacher, B. Madler and M. K. Heran, “Diffusion Tensor Imaging Findings Are Not Strongly Associated with Postconcussional Disorder 2 Months Following Mild Traumatic Brain Injury,” Journal of Head Trauma Rehabilitation, Vol. 27, No. 3, 2011, pp. 188-198.
[38] A. Einstein, “Collection of Papers Translated from the German,” Investigations on the Theory of Brownian Motion, Dover, New York, 1956.
[39] E. Stejskal and J. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” Journal of Chemical Physics, Vol. 42, No. 1, 1965, pp. 288-292. doi:10.1063/1.1695690
[40] T. L. Chenevert, J. A. Brunberg and J. G. Pipe, “Anisotropic Diffusion in Human White Matter: Demonstration with MR Techniques in Vivo,” Radiology, Vol. 177, No. 2, 1990, pp. 401-405.
[41] C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett and G. Di Chiro, “Diffusion Tensor MR Imaging of the Human Brain,” Radiology, Vol. 201, No. 3, 1996, pp. 637-648.
[42] D. C. Alexander and G. J. Barker, “Optimal Imaging Parameters for Fiber-Orientation Estimation in Diffusion MRI,” Neuroimage, Vol. 27, No. 2, 2005, pp. 357-367. doi:10.1016/j.Neuroimage.2005.04.008
[43] P. A. Armitage and M. E. Bastin, “Utilizing the Diffusion-to-Noise Ratio to Optimize Magnetic Resonance Diffusion Tensor Acquisition Strategies for Improving Measurements of Diffusion Anisotropy,” Magnetic Resonance in Medicine, Vol. 45, No. 6, 2001, pp. 10561065. doi:10.1002/mrm.1140
[44] K. M. Hasan, “A Framework for Quality Control and Parameter Optimization in Diffusion Tensor Imaging: Theoretical Analysis and Validation,” Magnetic Resonance Imaging, Vol. 25, No. 8, 2007, pp. 1196-1202. doi:10.1016/j.mri.2007.02.011
[45] D. K. Jones, M. A. Horsfield and A. Simmons, “Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging,” Magnetic Resonance in Medicine, Vol. 42, No. 3, 1999, pp. 515-525. doi:10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
[46] P. J. Basser, J. Mattiello and D. Lebihan, “Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo,” Journal of Magnetic Resonance, Series B, Vol. 103, No. 3, 1994, pp. 247-254. doi:10.1006/jmrb.1994.1037
[47] R. Salvador, A. Pena, D. K. Menon, et al., “Formal Characterization and Extension of the Linearized Diffusion Tensor Model,” Human Brain Mapping, Vol. 24, No. 2, 2005, pp. 144-155. doi:10.1002/hbm.20076
[48] K. M. Hasan, D. L. Parker and A. L. Alexander, “Comparison of Gradient Encoding Schemes for DiffusionTensor MRI,” Journal of Magnetic Resonance Imaging, Vol. 13, No. 5, 2001, pp. 769-780. doi:10.1002/jmri.1107
[49] N. G. Papadakis, C. D. Murrills, L. D. Hall, C. L. Huang and T. Adrian Carpenter, “Minimal Gradient Encoding for Robust Estimation of Diffusion Anisotropy,” Magnetic Resonance Imaging, Vol. 18, No. 6, 2000, pp. 671-679. doi:10.1016/S0730-725X(00)00151-X
[50] S. Skare, M. Hedehus, M. E. Moseley and T. Q. Li, “Condition Number as a Measure of Noise Performance of Diffusion Tensor Data Acquisition Schemes with MRI,” Journal of Magnetic Resonance, Vol. 147, No. 2, 2000, pp. 340-352. doi:10.1006/jmre.2000.2209
[51] D. Le Bihan, C. Poupon, A. Amadon and F. Lethimonnier, “Artifacts and Pitfalls in Diffusion MRI,” Journal of Magnetic Resonance Imaging, Vol. 24, No. 3, 2006, pp. 478-488. doi:10.1002/jmri.20683
[52] A. L. Alexander, J. S. Tsuruda, D. L. Parker, “Elimination of Eddy Current Artifacts in Diffusion-Weighted Echo-Planar Images: The Use of Bipolar Gradients,” Magnetic Resonance in Medicine, Vol. 38, No. 6, 1997, pp. 1016-1021. doi:10.1002/mrm.1910380623
[53] H. Bruder, H. Fischer, H. E. Reinfelder and F. Schmitt, “Image Reconstruction for Echo Planar Imaging with Nonequidistant K-Space Sampling,” Magnetic Resonance in Medicine, Vol. 23, No. 2, 1992, pp. 311-323. doi:10.1002/mrm.1910230211
[54] P. Mukherjee, J. I. Berman, S. W. Chung, C. P. Hess and R. G. Henry, “Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic Underpinnings,” American Journal of Neuroradiology, Vol. 29, No. 4, 2008, pp. 632-641. doi:10.3174/ajnr.A1051
[55] P. Mukherjee, S. W. Chung, J. I. Berman, C. P. Hess and R. G. Henry, “Diffusion Tensor MR Imaging and Fiber Tractography: Technical Considerations,” American Journal of Neuroradiology, Vol. 29, No. 5, 2008, pp. 843-852. doi:10.3174/ajnr.A1052
[56] T. G. Reese, O. Heid, R. M. Weisskoff and V. J. Wedeen, “Reduction of Eddy-Current-Induced Distortion in Diffusion MRI Using a Twice-Refocused Spin Echo,” Magnetic Resonance in Medicine, Vol. 49, No. 1, 2003, pp. 177-182. doi:10.1002/mrm.10308
[57] D. K. Jones, “The Effect of Gradient Sampling Schemes on Measures Derived from Diffusion Tensor MRI: A Monte Carlo Study,” Magnetic Resonance in Medicine, Vol. 51, No. 4, 2004, pp. 807-815. doi:10.1002/mrm.20033
[58] L. Landmann, “Deconvolution Improves Colocalization Analysis of Multiple Fluorochromes in 3D Confocal Data Sets More Than Filtering Techniques,” Journal of Microscopy, Vol. 208, No. 2, 2002, pp. 134-147. doi:10.1046/j.1365-2818.2002.01068.x
[59] T. E. Conturo, R. C. McKinstry, E. Akbudak and B. H. Robinson, “Encoding of Anisotropic Diffusion with Tetrahedral Gradients: A General Mathematical Diffusion Formalism and Experimental Results,” Magnetic Resonance in Medicine, Vol. 35, No. 3, 1996, pp. 399-412. doi:10.1002/mrm.1910350319
[60] S. Brockstedt, M. Borg, B. Geijer, et al., “Triggering in Quantitative Diffusion Imaging with Single-Shot EPI,” Acta Radiologica, Vol. 40, No. 3, 1999, pp. 263-269. doi:10.3109/02841859909175552
[61] S. Skare and J. L. Andersson, “On the Effects of Gating in Diffusion Imaging of the Brain Using Single Shot EPI,” Magnetic Resonance Imaging, Vol. 19, No. 8, 2001, pp. 1125-1128. doi:10.1016/S0730-725X(01)00415-5
[62] M. Lazar and A. L. Alexander, “An Error Analysis of White Matter Tractography Methods: Synthetic Diffusion Tensor Field Simulations,” Neuroimage, Vol. 20, No. 2, 2003, pp. 1140-1153. doi:10.1016/S1053-8119(03)00277-5
[63] B. Stieltjes, W. E. Kaufmann, P. C. van Zijl, et al., “Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem,” Neuroimage, Vol. 14, No. 3, 2001, pp. 723-735. doi:10.1006/nimg.2001.0861
[64] S. Mori, W. E. Kaufmann, C. Davatzikos, et al., “Imaging Cortical Association Tracts in the Human Brain Using Diffusion-Tensor-Based Axonal Tracking,” Magnetic Resonance in Medicine, Vol. 47, No. 2, 2002, pp. 215-223. doi:10.1002/mrm.10074
[65] C. R. Jack Jr., M. A. Bernstein, N. C. Fox, et al., “The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI Methods,” Journal of Magnetic Resonance Imaging, Vol. 27, No. 4, 2008, pp. 685-691. doi:10.1002/jmri.21049
[66] C. H. Meyer, J. M. Pauly, A. Macovski and D. G. Nishimura, “Simultaneous Spatial and Spectral Selective Excitation,” Magnetic Resonance in Medicine, Vol. 15, No. 2, 1990, pp. 287-304. doi:10.1002/mrm.1910150211
[67] Z. Nagy and N. Weiskopf, “Efficient Fat Suppression by Slice-Selection Gradient Reversal in Twice-Refocused Diffusion Encoding,” Magnetic Resonance in Medicine, Vol. 60, No. 5, 2008, pp. 1256-1260. doi:10.1002/mrm.21746
[68] S. Lee and G. Wu, “A New Spectro-Spatial RF Pulse Design for High-Resolution Isotropic Diffusion Imaging,” Proceedings of the 19th ISMRM Scientific Meeting & Exhibition, 2011, p. 176.
[69] M. A. Griswold, P. M. Jakob, R. M. Heidemann, et al., “Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA),” Magnetic Resonance in Medicine, Vol. 47, No. 6, 2002, pp. 1202-1210. doi:10.1002/mrm.10171
[70] K. P. Pruessmann, M. Weiger, M. B. Scheidegger and P. Boesiger, “SENSE: Sensitivity Encoding for Fast MRI,” Magnetic Resonance in Medicine, Vol. 42, No. 5, 1999, pp. 952-962. doi:10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
[71] P. Jezzard and R. S. Balaban, “Correction for Geometric Distortion in Echo Planar Images from B0 Field Variations,” Magnetic Resonance in Medicine, Vol. 34, No. 1, 1995, pp. 65-73. doi:10.1002/mrm.1910340111
[72] C. Poupon, C. A. Clark, V. Frouin, et al., “Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles,” Neuroimage, Vol. 12, No. 2, 2000, pp. 184-195. doi:10.1006/nimg.2000.0607
[73] G. K. Rohde, A. S. Barnett, P. J. Basser, S. Marenco and C. Pierpaoli, “Comprehensive Approach for Correction of Motion and Distortion in Diffusion-Weighted MRI,” Magnetic Resonance in Medicine, Vol. 51, No. 1, 2004, pp. 103-114. doi:10.1002/mrm.10677
[74] J. Mattiello, P. J. Basser and D. Le Bihan, “The B Matrix in Diffusion Tensor Echo-Planar Imaging,” Magnetic Resonance in Medicine, Vol. 37, No. 2, 1997, pp. 292-300. doi:10.1002/mrm.1910370226
[75] M. Jenkinson and S. Smith, “A Global Optimisation Method for Robust Affine Registration of Brain Images,” Medical Image Analysis, Vol. 5, No. 2, 2001, pp. 143-156. doi:10.1016/S1361-8415(01)00036-6
[76] M. Wu, L. C. Chang, L. Walker, et al., “Comparison of EPI Distortion Correction Methods in Diffusion Tensor MRI Using a Novel Framework,” Medical Image Computing and Computer-Assisted Intervention, Vol. 11, Pt. 2, 2008, pp. 321-329.
[77] D. Holland, J. M. Kuperman and A. M. Dale, “Efficient Correction of Inhomogeneous Static Magnetic Field-Induced Distortion in Echo Planar Imaging,” Neuroimage, Vol. 50, No. 1, 2010, pp. 175-183. doi:10.1016/j.neuroimage.2009.11.044
[78] K. V. Embleton, H. A. Haroon, D. M. Morris, M. A. Ralph and G. J. Parker, “Distortion Correction for Diffusion-Weighted MRI Tractography and FMRI in the Temporal Lobes,” Human Brain Mapping, Vol. 31, No. 10, 2010, pp. 1570-1587. doi:10.1002/hbm.20959
[79] L. C. Chang, D. K. Jones and C. Pierpaoli, “RESTORE: Robust Estimation of Tensors by Outlier Rejection,” Magnetic Resonance in Medicine, Vol. 53, No. 5, 2005, pp. 1088-1095. doi:10.1002/mrm.20426
[80] J. F. Mangin, C. Poupon, C. Clark, D. Le Bihan and I. Bloch, “Distortion Correction and Robust Tensor Estimation for MR Diffusion Imaging,” Medical Image Analysis, Vol. 6, No. 3, 2002, pp. 191-198. doi:10.1016/S1361-8415(02)00079-8
[81] C. F. Westin, S. E. Maier, H. Mamata, et al., “Processing and Visualization for Diffusion Tensor MRI,” Medical Image Analysis, Vol. 6, No. 2, 2002, pp. 93-108. doi:10.1016/S1361-8415(02)00053-1
[82] R. A. Kanaan, S. S. Shergill, G. J. Barker, et al., “Tractspecific Anisotropy Measurements in Diffusion Tensor Imaging,” Psychiatry Research: Neuroimaging, Vol. 146, No. 1, 2006, pp. 73-82. doi:10.1016/j.pscychresns.2005.11.002
[83] Y. Zhou, F. C. Lin, J. Zhu, et al., “Whole Brain Diffusion Tensor Imaging Histogram Analysis in Vascular Cognitive Impairment,” Journal of the Neurological Sciences, Vol. 268, No. 1, 2008, pp. 60-64. doi:10.1016/j.jns.2007.11.005
[84] D. K. Jones, M. R. Symms, M. Cercignani and R. J. Howard, “The Effect of Filter Size on VBM Analyses of DT-MRI Data.” Neuroimage, Vol. 26, No. 2, 2005, pp. 546-554. doi:10.1016/j.neuroimage.2005.02.013
[85] S. M. Smith, M. Jenkinson, H. Johansen-Berg, et al., “Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data,” Neuroimage, Vol. 31, No. 4, 2006, pp. 1487-1505. doi:10.1016/j.neuroimage.2006.02.024
[86] R. A. Edden and D. K. Jones, “Spatial and Orientational Heterogeneity in the Statistical Sensitivity of SkeletonBased Analyses of Diffusion Tensor MR Imaging Data,” Journal of Neuroscience Methods, Vol. 201, No. 1, 2011, pp. 213-219. doi:10.1016/j.jneumeth.2011.07.025
[87] H. Zhang, P. A. Yushkevich and J. C. Gee, “Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization,” Medical Image Computing and Computer-Assisted Intervention, Vol. 3749, No. 8, 2005, pp. 172-179.
[88] Y. Cao, M. I. Miller, R. L. Winslow and L. Younes, “Large Deformation Diffeomorphic Metric Mapping of Vector Fields,” IEEE Transactions on Medical Imaging, Vol. 24, No. 9, 2005, pp. 1216-1230. doi:10.1109/TMI.2005.853923
[89] B. Avants, J. T. Duda, J. Kim, et al., “Multivariate Analysis of Structural and Diffusion Imaging in Traumatic Brain Injury,” Academic Radiology, Vol. 15, No. 12, 2008, pp. 13601375. doi:10.1016/j.acra.2008.07.007
[90] Y. Wang, A. Gupta, Z. Liu, et al., “DTI Registration in Atlas Based Fiber Analysis of Infantile Krabbe Disease,” Neuroimage, Vol. 55, No. 4, 2011, pp. 1577-1586. doi:10.1016/j.neuroimage.2011.01.038
[91] P. A. Yushkevich, H. Zhang, T. J. Simon and J. C. Gee, “Structure-Specific Statistical Mapping of White Matter Tracts,” Neuroimage, Vol. 41, No. 2, 2008, pp. 448-461. doi:10.1016/j.neuroimage.2008.01.013
[92] S. Mori and P. C. van Zijl, “Fiber Tracking: Principles and Strategies—A Technical Review,” NMR in Biomedicine, Vol. 15, No. 7-8, 2002, pp. 468-480. doi:10.1002/nbm.781
[93] P. Fillard, C. Poupon and J. F. Mangin, “A Novel Global Tractography Algorithm Based on an Adaptive Spin Glass Model,” Medical Image Computing and ComputerAssisted Intervention, Vol. 12, No. 1, 2009, pp. 927-934.
[94] S. Jbabdi, M. W. Woolrich, J. L. Andersson and T. E. Behrens, “A Bayesian Framework for Global Tractography,” Neuroimage, Vol. 37, No. 1, 2007, pp. 116-129. doi:10.1016/j.neuroimage.2007.04.039
[95] G. J. Parker, H. A. Haroon and C. A. Wheeler-Kingshott, “A Framework for a Streamline-Based Probabilistic Index of Connectivity (PICo) Using a Structural Interpretation of MRI Diffusion Measurements,” Journal of Magnetic Resonance Imaging, Vol. 18, No. 2, 2003, pp. 242-254. doi:10.1002/jmri.10350
[96] T. E. Behrens, M. W. Woolrich, M. Jenkinson, et al., “Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging,” Magnetic Resonance in Medicine, Vol. 50, No. 5, 2003, pp. 1077-1088. doi:10.1002/mrm.10609
[97] B. W. Kreher, I. Mader and V. G. Kiselev, “Gibbs Tracking: A Novel Approach for the Reconstruction of Neuronal Pathways,” Magnetic Resonance in Medicine, Vol. 60, No. 4, 2008, pp. 953-963. doi:10.1002/mrm.21749
[98] M. Reisert, I. Mader, C. Anastasopoulos, et al., “Global Fiber Reconstruction Becomes Practical,” Neuroimage, Vol. 54, No. 2, 2011, pp. 955-962. doi:10.1016/j.neuroimage.2010.09.016
[99] A. W. Anderson, “Theoretical Analysis of the Effects of Noise on Diffusion Tensor Imaging,” Magnetic Resonance in Medicine, Vol. 46, No. 6, 2001, pp. 1174-1188. doi:10.1002/mrm.1315
[100] S, Aja-Fernandez, M, Niethammer, M, Kubicki, M. E. Shenton and C. F. Westin, “Restoration of DWI Data Using a Rician LMMSE Estimator,” IEEE Transaction of Medical Imaging, Vol. 27, No. 10, 2008, pp. 1389-1403. doi:10.1109/TMI.2008.920609
[101] A. Tristan-Vega and S. Aja-Fernandez, “DWI Filtering Using Joint Information for DTI and HARDI,” Medical Image Analysis, Vol. 14, No. 2, 2010, pp. 205-218. doi:10.1016/j.media.2009.11.001
[102] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi, “In vivo Fiber Tractography Using DT-MRI Data.” Magnetic Resonance in Medicine, Vol. 44, No. 4, 2000, pp. 625-632. doi:10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
[103] S. Mori, B. J. Crain, V. P. Chacko and P. C. van Zijl, “Three-Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging,” Annals of Neurology, Vol. 45, No. 2, 1999, pp. 265-269. doi:10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
[104] M. Catani, R. J. Howard, S. Pajevic and D. K. Jones, “Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain,” Neuroimage, Vol. 17, No. 1, 2002, pp. 77-94. doi:10.1006/nimg.2002.1136
[105] J. D. Tournier, F. Calamante, M. D. King, D. G. Gadian and A. Connelly, “Limitations and Requirements of Diffusion Tensor Fiber Tracking: An Assessment Using Simulations,” Magnetic Resonance in Medicine, Vol. 47, No.4, 2002, pp. 701-708. doi:10.1002/mrm.10116
[106] T. E. Behrens, H. Johansen-Berg, M. W. Woolrich, et al., “Non-Invasive Mapping of Connections between Human Thalamus and Cortex Using Diffusion Imaging,” Nature Neuroscience, Vol. 6, No. 7, 2003 pp. 750-757. doi:10.1038/nn1075
[107] L. J. O’Donnell, M. Kubicki, M. E. Shenton, et al. “A Method for Clustering White Matter Fiber Tracts,” American Journal of Neuroradiology, Vol. 27, No. 5, 2006, pp. 1032-1036.
[108] L. J. O’Donnell and C. F. Westin, “Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas,” IEEE Transaction of Medical Imaging, Vol. 26, No. 11, 2007, pp. 1562-1575. doi:10.1109/TMI.2007.906785
[109] P. G. Batchelor, F. Calamante, J. D. Tournier, et al., “Quantification of the Shape of Fiber Tracts,” Magnetic Resonance in Medicine, Vol. 55, No. 4, 2006, pp. 894-903. doi:10.1002/mrm.20858
[110] C, Lenglet, M, Rousson and R. Deriche, “DTI Segmentation by Statistical Surface Evolution,” IEEE Transaction of Medical Imaging, Vol. 25, No. 6, 2006, pp. 685-700. doi:10.1109/TMI.2006.873299
[111] S. P. Awate, H. Zhang and J. C. Gee, “A Fuzzy, Nonparametric Segmentation Framework for DTI and MRI Analysis: With Applications to DTI-Tract Extraction,” IEEE Transaction of Medical Imaging, Vol. 26, No. 11, 2007, pp. 1525-1536. doi:10.1109/TMI.2007.907301
[112] S. Jbabdi, P. Bellec, R. Toro, et al., “Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography,” International Journal of Biomedical Imaging, Vol. 2008, No. 2, 2008, p. 320195.
[113] J. D. Clayden, M. E. Bastin and A. J. Storkey, “Improved Segmentation Reproducibility in Group Tractography Using a Quantitative Tract Similarity Measure,” Neuroimage, Vol. 33, No. 2, 2006, pp. 482-492. doi:10.1016/j.neuroimage.2006.07.016
[114] J. D. Clayden, A. J. Storkey and M. E. Bastin, “A Probabilistic Model-Based Approach to Consistent White Matter Tract Segmentation,” IEEE Transaction of Medical Imaging, Vol. 26, No. 11, 2007, pp. 1555-1561. doi:10.1109/TMI.2007.905826
[115] M. Maddah, W. E. Grimson, S. K. Warfield and W. M. Wells, “A Unified Framework for Clustering and Quantitative Analysis of White Matter Fiber Tracts,” Medical Image Analysis, Vol. 12, No. 2, 2008, pp. 191-202. doi:10.1016/j.media.2007.10.003
[116] I. Eckstein, D. W. Shattuck, J. L. Stein, et al., “Active Fibers: Matching Deformable Tract Templates to Diffusion Tensor Images,” Neuroimage, Vol. 47, No. 2, 2009, pp. T82-T89. doi:10.1016/j.neuroimage.2009.01.065
[117] A. Leemans, J. Sijbers, S. De Backer, E. Vandervliet and P. Parizel, “Multiscale White Matter Fiber Tract Coregistration: A New Feature-Based Approach to Align Diffusion Tensor Data,” Magnetic Resonance in Medicine, Vol. 55, No. 6, 2006, pp. 1414-1423. doi:10.1002/mrm.20898
[118] S. Barbieri, M. H. Bauer, J. Klein, C. Nimsky and H. K. Hahn, “Segmentation of Fiber Tracts Based on an Accuracy Analysis on Diffusion Tensor Software Phantoms,” Neuroimage, Vol. 55, No. 2, 2011, pp. 532-544. doi:10.1016/j.neuroimage.2010.12.069
[119] P. L. Bazin, C. Ye, J. A. Bogovic, et al., “Direct Segmentation of the Major White Matter Tracts in Diffusion Tensor Images,” Neuroimage, Vol. 58, No. 2, 2011, pp. 458-468. doi:10.1016/j.neuroimage.2011.06.020
[120] A. Yendiki, P. Panneck, P. Srinivasan, et al., “Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy,” Frontiers in Neuroinformatics, Vol. 5, No. 23, 2011, p. 23. doi:10.3389/fninf.2011.00023
[121] B. Fischl and A. M. Dale, “Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images,” Proceedings of the National Academy of Sciences of USA, Vol. 97, No. 20, 2000, pp. 11050-11055. doi:10.1073/pnas.200033797
[122] B. Fischl, D. H. Salat, E. Busa, et al., “Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain,” Neuron, Vol. 33, No. 3, 2002, pp. 341-355. doi:10.1016/S0896-6273(02)00569-X
[123] S. C. Partridge, P. Mukherjee, J. I. Berman, et al., “Tractography-Based Quantitation of Diffusion Tensor Imaging Parameters in White Matter Tracts of Preterm Newborns,” Journal of Magnetic Resonance Imaging, Vol. 22, No. 4, 2005, pp. 467-474. doi:10.1002/jmri.20410
[124] S. Wakana, A. Caprihan, M. M. Panzenboeck, et al., “Reproducibility of Quantitative Tractography Methods Applied to Cerebral White Matter,” Neuroimage, Vol. 36, No. 3, 2007, pp. 630-644. doi:10.1016/j.neuroimage.2007.02.049
[125] I. Corouge, P. T. Fletcher, S. Joshi, S. Gouttard and G. Gerig, “Fiber Tract-Oriented Statistics for Quantitative Diffusion Tensor MRI Analysis,” Medical Image Analysis, Vol. 10, No. 5, 2006, pp. 786-798. doi:10.1016/j.media.2006.07.003
[126] S. W. Davis, N. A. Dennis, N. G. Buchler, et al., “Assessing the Effects of Age on Long White Matter Tracts Using Diffusion Tensor Tractography,” Neuroimage, Vol. 46, No. 2, 2009, pp. 530-541. doi:10.1016/j.neuroimage.2009.01.068
[127] C. B. Goodlett, P. T. Fletcher, J. H. Gilmore and G. Gerig, “Group Analysis of DTI Fiber Tract Statistics with Application to Neurodevelopment,” Neuroimage, Vol. 45, No. 1, 2009, pp. S133-S142. doi:10.1016/j.neuroimage.2008.10.060
[128] J. B. Colby, L. Soderberg, Lebel C, et al., “Along-Tract Statistics Allow for Enhanced Tractography Analysis,” Neuroimage, Vol. 59, No. 4, 2012, pp. 3227-3242. doi:10.1016/j.neuroimage.2011.11.004
[129] T. B. Dyrby, L. V. Sogaard, G. J. Parker, et al., “Validation of in Vitro Probabilistic Tractography,” Neuroimage, Vol. 37, No. 4, 2007, pp. 1267-1277. doi:10.1016/j.neuroimage.2007.06.022
[130] J. D. Clarke, “Using Fluorescent Dyes for Fate Mapping, Lineage Analysis, and Axon Tracing in the Chick Embryo,” Methods in Molecular Biology, Vol. 461, 2008, pp. 351-361.
[131] E. Tardif and S. Clarke, “Intrinsic Connectivity of Human Auditory Areas: A Tracing Study with DiI,” European Journal of Neuroscience, Vol. 13, No. 5, 2001, pp. 10451050. doi:10.1046/j.0953-816x.2001.01456.x
[132] W. Feller, “An Introduction to Probability Theory and Its Applications,” Second Edition, John Wiley & Sons, New York, 1971.
[133] P. J. Basser, “Inferring Microstructural Features and the Physiological State of Tissues from Diffusion-Weighted Images,” NMR in Biomedicine, Vol. 8, No. 7, 1995, pp. 333-344. doi:10.1002/nbm.1940080707
[134] D. S. Grebenkov, “NMR Survey of Reflected Brownian Motion,” Reviews of Modern Physics, Vol. 79, No. 3, 2007, pp. 1077-1137. doi:10.1103/RevModPhys.79.1077
[135] D. C. Alexander, G. J. Barker and S. R. Arridge, “Detection and Modeling of Non-Gaussian Apparent Diffusion Coefficient Profiles in Human Brain Data,” Magnetic Resonance in Medicine, Vol. 48, No. 2, 2002, pp. 331-340. doi:10.1002/mrm.10209
[136] Y. Assaf and P. J. Basser, “Composite Hindered and Restricted Model of Diffusion (CHARMED) MR Imaging of the Human Brain,” Neuroimage, Vol. 27, No. 1, 2005, pp. 48-58. doi:10.1016/j.neuroimage.2005.03.042
[137] Y. Assaf and Y. Cohen, “Assignment of the Water SlowDiffusing Component in the Central Nervous System Using Q-Space Diffusion MRS: Implications for Fiber Tract Imaging,” Magnetic Resonance in Medicine, Vol. 43, No. 2, 2000, pp. 191-199. doi:10.1002/(SICI)1522-2594(200002)43:2<191::AID-MRM5>3.0.CO;2-B
[138] C. Beaulieu, “The Basis of Anisotropic Water Diffusion in the Nervous System—A Technical Review,” NMR in Biomedicine, Vol. 15, No. 7-8, 2002, pp. 435-455. doi:10.1002/nbm.782
[139] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu and K. Kaczynski, “Diffusional Kurtosis Imaging: The Quantification of Non-Gaussian Water Diffusion by Means of Magnetic Resonance Imaging,” Magnetic Resonance in Medicine, Vol. 53, No. 6, 2005, pp. 1432-1440. doi:10.1002/mrm.20508
[140] C. A. Clark and D. Le Bihan, “Water Diffusion Compartmentation and Anisotropy at High B Values in the Human Brain,” Magnetic Resonance in Medicine, Vol. 44, No. 6, 2000, pp. 852-859. doi:10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
[141] M. C. DeLano and Y. Cao, “High B-Value Diffusion Imaging,” Neuroimaging Clinics of North America, Vol. 12, No. 1, 2002, pp. 21-34. doi:10.1016/S1052-5149(03)00068-6
[142] T. Niendorf, R. M. Dijkhuizen, D. G. Norris, M. van Lookeren Campagne and K. Nicolay, “Biexponential Diffusion Attenuation in Various States of Brain Tissue: Implications for Diffusion-Weighted Imaging,” Magnetic Resonance in Medicine, Vol. 36, No. 6, 1996, pp. 847-857. doi:10.1002/mrm.1910360607
[143] Y. Assaf and Y. Cohen, “Non-Mono-Exponential Attenuation of Water and N-Acetyl Aspartate Signals Due to Diffusion in Brain Tissue,” Journal of Magnetic Resonance, Vol. 131, No. 2, 1998, pp. 69-85. doi:10.1006/jmre.1997.1313
[144] T. E. Behrens, H. J. Berg, S. Jbabdi, M. F. Rushworth and M. W. Woolrich, “Probabilistic Diffusion Tractography with Multiple Fibre Orientations: What Can We Gain?” Neuroimage, Vol. 34, No. 2007, pp. 144-155. doi:10.1016/j.neuroimage.2006.09.018
[145] B. Jeurissen, A. Leemans, J. Tournier, D. K. Jones and J. Sijbers, “Estimating the Number of Fiber Orientations in Diffusion MRI Voxels: A Constrained Spherical Deconvolution Study,” Stockholm, Sweden, 2010.
[146] D. S. Tuch, T. G. Reese, M. R. Wiegell, et al., “High Angular Resolution Diffusion Imaging Reveals Intravoxel White Matter Fiber Heterogeneity,” Magnetic Resonance in Medicine, Vol. 48, No. 4, 2002, pp. 577-582. doi:10.1002/mrm.10268
[147] J. D. Tournier, F. Calamante, D. G. Gadian and A. Connelly, “Direct Estimation of the Fiber Orientation Density Function from Diffusion-Weighted MRI Data Using Spherical Deconvolution,” Neuroimage, Vol. 23, No. 3, 2004, pp. 1176-1185. doi:10.1016/j.neuroimage.2004.07.037
[148] T. S. Yo, A. Anwander, M. Descoteaux, et al., “Quantifying Brain Connectivity: A Comparative Tractography Study,” Medical Image Computing and Computer-Assisted Intervention, Vol. 12, Pt. 1, 2009, pp. 886-893.
[149] P. T. Callaghan, C. D. Eccles and Y. Xia, “NMR Microscopy of Dynamic Displacements: K-Space and Q-Space Imaging,” Journal of Physics E: Scientific Instruments, Vol. 21, No. 8, 1988, pp. 820-822.
[150] D. S. Tuch, “Q-Ball Imaging,” Magnetic Resonance in Medicine, Vol. 52, No. 6, 2004, pp. 1358-1372. doi:10.1002/mrm.20279
[151] P. T. Callaghan, C. D. Eccles and Y. Xia, “NMR Microscopy of Dynamic Displacements: K-Space and Q-Space Imaging,” Journal of Physics E: Scientific Instruments, Vol. 21, No. 8, 1988, pp. 820-822. doi:10.1088/0022-3735/21/8/017
[152] E. Ozarslan, T. M. Shepherd, B. C. Vemuri, S. J. Blackband and T. H. Mareci, “Resolution of Complex Tissue Microarchitecture Using the Diffusion Orientation Transform (DOT),” Neuroimage, Vol. 31, No. 3, 2006, pp. 1086-1103. doi:10.1016/j.neuroimage.2006.01.024
[153] K. M. Jansons and D. C. Alexander, “Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version,” Information Processing in Medical Imaging, Vol. 18, 2003, pp. 672-683. doi:10.1007/978-3-540-45087-0_56
[154] M. Lazar, J. H. Jensen, L. Xuan and J. A. Helpern, “Estimation of the Orientation Distribution Function from Diffusional Kurtosis Imaging,” Magnetic Resonance in Medicine, Vol. 60, No. 4, 2008, pp. v774-v781. doi:10.1002/mrm.21725
[155] E. Ozarslan and T. H. Mareci, “Generalized Diffusion Tensor Imaging and Analytical Relationships between Diffusion Tensor Imaging and High Angular Resolution Diffusion Imaging,” Magnetic Resonance in Medicine Vol. 50, No. 5, 2003, pp. 955-965.
[156] A. W. Anderson, “Measurement of Fiber Orientation Distributions Using High Angular Resolution Diffusion Imaging,” Magnetic Resonance in Medicine, Vol. 54, No. 5, 2005, pp. 1194-1206. doi:10.1002/mrm.20667
[157] T. B. Leergaard, N. S. White, A. de Crespigny, et al., “Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain,” PLoS One, Vol. 5, No. 1, 2010; p. e8595. doi:10.1371/journal.pone.0008595
[158] V. Patel, Y. Shi, P. M. Thompson and A. W. Toga, “Mesh-Based Spherical Deconvolution: A Flexible Approach to Reconstruction of Non-Negative Fiber Orientation Distributions,” Neuroimage, Vol. 51, No. 3, 2010, pp. 1071-1081. doi:10.1016/j.neuroimage.2010.02.060
[159] K. E. Sakaie and M. J. Lowe, “An Objective Method for Regularization of Fiber Orientation Distributions Derived from Diffusion-Weighted MRI,” Neuroimage, Vol. 34, No. 1, 2007, pp. 169-176. doi:10.1016/j.neuroimage.2006.08.034
[160] B. Jian and B. C. Vemuri, “A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers from Diffusion Weighted MRI,” IEEE Transaction of Medical Imaging, Vol. 26, No. 11, 2007, pp. 14641471. doi:10.1109/TMI.2007.907552
[161] J. D. Tournier, C. H. Yeh, F. Calamante, et al., “Resolving Crossing Fibres Using Constrained Spherical Deconvolution: Validation Using Diffusion-Weighted Imaging Phantom Data,” Neuroimage, Vol. 42, No. 2, 2008, pp. 617-625. doi:10.1016/j.neuroimage.2008.05.002
[162] B. W. Kreher, J. F. Schneider, I. Mader, et al., “Multitensor Approach for Analysis and Tracking of Complex Fiber Configurations,” Magnetic Resonance in Medicine, Vol. 54, No. 5, 2005, pp. 1216-1225. doi:10.1002/mrm.20670
[163] F. Dell’Acqua, G. Rizzo, P. Scifo, et al., “A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging,” IEEE Transactions on Bio-Medical Engineering, Vol. 54, No. 3, 2007, pp. 462472. doi:10.1109/TBME.2006.888830
[164] J. D. Tournier, F. Calamante and A. Connelly, “Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-Negativity Constrained Super-Resolved Spherical Deconvolution,” Neuroimage, Vol. 35, No. 4, 2007, pp. 1459-1472. doi:10.1016/j.neuroimage.2007.02.016
[165] C. Liu, R. Bammer, B. Acar and M. E. Moseley, “Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors,” Magnetic Resonance in Medicine, Vol. 51, No. 5, 2004, pp. 924-937. doi:10.1002/mrm.20071
[166] D. C. Alexander, “Multiple-Fiber Reconstruction Algorithms for Diffusion MRI,” Annals of the New York Academy of Sciences, Vol. 1064, 2005, pp. 113-133. doi:10.1196/annals.1340.018
[167] J. T. Povlishock and E. H. Pettus, “Traumatically Induced Axonal Damage: Evidence for Enduring Changes in Axolemmal Permeability with Associated Cytoskeletal Change,” Acta Neurochirurgicaurgica Supplement, Vol. 66, 1996, pp. 81-86.
[168] A. Buki and J. T. Povlishock, “All Roads Lead to Disconnection?—Traumatic Axonal Injury Revisited,” Acta Neurochirurgica, Vol. 148, No. 2, 2006, pp. 181-193. doi:10.1007/s00701-005-0674-4
[169] R. W. Shin, T. Iwaki, T. Kitamoto and J. Tateishi, “Hydrated Autoclave Pretreatment Enhances Tau Immunoreactivity in Formalin-Fixed Normal and Alzheimer’s Disease Brain Tissues,” Laboratory Investigation; A Journal of Technical Methods and Pathology, Vol. 64, No. 5, 1991, pp. 693-702.
[170] M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford and R. A. Crowther, “Multiple Isoforms of Human Microtubule-Associated Protein Tau: Sequences and Localization in Neurofibrillary Tangles of Alzheimer’s Disease,” Neuron, Vol. 3, No. 4, 1989, pp. 519-526. doi:10.1016/0896-6273(89)90210-9
[171] M. Goedert, C. M. Wischik, R. A. Crowther, J. E. Walker and A. Klug, “Cloning and Sequencing of the CDNA Encoding a Core Protein of the Paired Helical Filament of Alzheimer Disease: Identification as the MicrotubuleAssociated Protein Tau,” Proceedings of the National Academy of Sciences of USA, Vol. 85, No. 11, 1988, pp. 4051-4055. doi:10.1073/pnas.85.11.4051
[172] A. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal and K. Iqbal, “Hyperphosphorylation Induces Self-Assembly of Tau into Tangles of Paired Helical Filaments/Straight Filaments,” Proceedings of the National Academy of Sciences of USA, Vol. 98, No. 12, 2001, pp. 6923-6928. doi:10.1073/pnas.121119298
[173] S. T. DeKosky, M. D. Ikonomovic and S. Gandy, “Traumatic Brain Injury: Football, Warfare, and Long-Term Effects,” Minnesota medicine, Vol. 93, No. 12, 2010, pp. 46-47.
[174] S. Magnoni, T. J. Esparza, V. Conte, et al., “Tau Elevations in the Brain Extracellular Space Correlate with Reduced Amyloid-Beta Levels and Predict Adverse Clinical Outcomes after Severe Traumatic Brain Injury,” Brain, Vol. 135, No. 4, 2012, pp. 1268-1280.
[175] S. D. Ginsberg, “Alterations in Discrete Glutamate Receptor Subunits in Adult Mouse Dentate Gyrus Granule Cells Following Perforant Path Transection,” Analytical and Bioanalytical Chemistry, Vol. 397, No. 8, 2010, pp. 3349-3358. doi:10.1007/s00216-010-3826-1
[176] S. D. Ginsberg and L. J. Martin, “Axonal Transection in Adult Rat Brain Induces Transsynaptic Apoptosis and Persistent Atrophy of Target Neurons,” Journal of Neurotrauma, Vol. 19, No. 1, 2002, pp. 99-109. doi:10.1089/089771502753460277
[177] S. Przedborski, M. Vila and V. Jackson-Lewis, “Neurodegeneration: What Is It and Where Are We?” The Journal of Clinical Investigation, Vol. 111, No. 1, 2003, pp. 3-10.
[178] S. N. Niogi and P. Mukherjee, “Diffusion Tensor Imaging of Mild Traumatic Brain Injury,” Journal of Head Trauma Rehabilitation, Vol. 25, No. 4, 2010, pp. 241-55. doi:10.1097/HTR.0b013e3181e52c2a
[179] H. Iizuka, K. Sakatani and W. Young, “Corticofugal Axonal Degeneration in Rats after Middle Cerebral Artery Occlusion,” Stroke, Vol. 20, No. 10, 1989, pp. 1396-1402. doi:10.1161/01.STR.20.10.1396
[180] G. Thomalla, V. Glauche, C. Weiller and J. Rother, “Time Course of Wallerian Degeneration after is Chaemic Stroke Revealed by Diffusion Tensor Imaging,” Journal of Neurology, Neurosurgery & Psychiatry, Vol. 76, No. 2, 2005, pp. 266-268. doi:10.1136/jnnp.2004.046375
[181] C. Pierpaoli, A. Barnett, S. Pajevic, et al., “Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture,” Neuroimage, Vol. 13, No. 6, 2001, pp. 1174-1185. doi:10.1006/nimg.2001.0765
[182] A. Gass, T. Niendorf and J. G. Hirsch, “Acute and Chronic Changes of the Apparent Diffusion Coefficient in Neurological Disorders—Biophysical Mechanisms and Possible Underlying Histopathology,” Journal of the Neurological Sciences, Vol. 186, Suppl. 1, 2001, pp. S15S23. doi:10.1016/S0022-510X(01)00487-7
[183] C. H. Sotak, “Nuclear Magnetic Resonance (NMR) Measurement of the Apparent Diffusion Coefficient (ADC) of Tissue Water and Its Relationship to Cell Volume Changes in Pathological States,” Neurochemistry International, Vol. 45, No. 4, 2004, pp. 569-582. doi:10.1016/j.neuint.2003.11.010
[184] P. J. Basser and C. Pierpaoli, “Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI,” Journal of Magnetic Resonance, Series B, Vol. 111, No. 3, 1996, pp. 209-219. doi:10.1006/jmrb.1996.0086
[185] S. K. Song, S. W. Sun, W. K. Ju, et al., “Diffusion Tensor Imaging Detects and Differentiates Axon and Myelin Degeneration in Mouse Optic Nerve after Retinal Ischemia,” Neuroimage, Vol. 20, No. 3, 2003, pp. 1714-1722. doi:10.1016/j.Neuroimage,.2003.07.005
[186] R. Ito, S. Mori and E. R. Melhem, “Diffusion Tensor Brain Imaging and Tractography,” Neuroimaging Clinics of North America, Vol. 12, No. 1, 2002, pp. 1-19. doi:10.1016/S1052-5149(03)00067-4
[187] C. A. Wheeler-Kingshott and M. Cercignani, “About ‘Axial’ and ‘Radial’ Diffusivities,” Magnetic Resonance in Medicine, Vol. 61, No. 5, 2009, pp. 1255-1260. doi:10.1002/mrm.21965
[188] K. Arfanakis, V. M. Haughton, J. D. Carew, et al., “Diffusion Tensor MR Imaging in Diffuse Axonal Injury,” American Journal of Neuroradiology, Vol. 23, No. 5, 2002, pp. 794-802.
[189] R. R. Benson, S. A. Meda, S. Vasudevan, et al., “Global White Matter Analysis of Diffusion Tensor Images is Predictive of Injury Severity in Traumatic Brain Injury,” Journal of Neurotrauma, Vol. 24, No. 3, 2007, pp. 446-459. doi:10.1089/neu.2006.0153
[190] L. Miles, R. I. Grossman, G. Johnson, et al., “Short-Term DTI Predictors of Cognitive Dysfunction in Mild Traumatic Brain Injury,” Brain Injury, Vol. 22, No. 2, 2008, pp. 115-122. doi:10.1080/02699050801888816
[191] M. L. Lipton, E. Gulko, M. E. Zimmerman, et al., “Diffusion-Tensor Imaging Implicates Prefrontal Axonal Injury in Executive Function Impairment Following Very Mild Traumatic Brain Injury,” Radiology, Vol. 252, No. 3, 2009, pp. 816-824. doi:10.1148/radiol.2523081584
[192] T. A. Huisman, L. H. Schwamm, P. W. Schaefer, et al., “Diffusion Tensor Imaging as Potential Biomarker of White Matter Injury in Diffuse Axonal Injury,” American Journal of Neuroradiology, Vol. 25, No. 3, 2004, pp. 370-376.
[193] J. J. Bazarian, J. Zhong, B. Blyth, et al., “Diffusion Tensor Imaging Detects Clinically Important Axonal Damage after Mild Traumatic Brain Injury: A Pilot Study,” Journal of Neurotrauma, Vol. 24, No. 9, 2007, pp. 1447-1459. doi:10.1089/neu.2007.0241
[194] E. A. Wilde, S. R. McCauley, A. Barnes, et al., “Serial Measurement of Memory and Diffusion Tensor Imaging Changes within the First Week Following Uncomplicated Mild Traumatic Brain Injury,” Brain Imaging and Behavior, Vol. 6, No. 2, 2012, pp. 319-328. doi:10.1007/s11682-012-9174-3
[195] A. Marmarou, “Traumatic Brain Edema: An Overview,” Acta Neurochirurgicaurgica Supplement, Vol. 60, No. 6, 1994, pp. 421-424. doi:10.1002/mrm.1910360612
[196] C. Pierpaoli and P. J. Basser, “Toward a Quantitative Assessment of Diffusion Anisotropy,” Magnetic Resonance in Medicine, Vol. 36, No. 6, 1996, pp. 893-906.
[197] M. Singh, J. Jeong, D. Hwang, W. Sungkarat and P. Gruen, “Novel Diffusion Tensor Imaging Methodology to Detect and Quantify Injured Regions and Affected Brain Pathways in Traumatic Brain Injury,” Magnetic Resonance Imaging, Vol. 28, No. 1, 2010, pp. 22-40. doi:10.1016/j.mri.2009.05.049
[198] S. N. Niogi, P. Mukherjee, J. Ghajar, et al., “Extent of Microstructural White Matter Injury in Postconcussive Syndrome Correlates with Impaired Cognitive Reaction Time: A 3T Diffusion Tensor Imaging Study of Mild Traumatic Brain Injury,” American Journal of Neuroradiology, Vol. 29, No. 5, 2008, pp. 967-973. doi:10.3174/ajnr.A0970
[199] D. R. Rutgers, F. Toulgoat, J. Cazejust, et al., “White Matter Abnormalities in Mild Traumatic Brain Injury: A Diffusion Tensor Imaging Study,” American Journal of Neuroradiology Vol. 29, No. 3, 2008, pp. 514-519. doi:10.3174/ajnr.A0856
[200] C. Lo, K. Shifteh, T. Gold, J. A. Bello and M. L. Lipton, “Diffusion Tensor Imaging Abnormalities in Patients with Mild Traumatic Brain Injury and Neurocognitive Impairment,” Journal of Computer Assisted Tomography, Vol. 33, No. 2, 2009, pp. 293-297. doi:10.1097/RCT.0b013e31817579d1
[201] R. Kumar, R. K. Gupta, M. Husain, et al., “Comparative Evaluation of Corpus Callosum DTI Metrics in Acute Mild and Moderate Traumatic Brain Injury: Its Correlation with Neuropsychometric Tests,” Brain Injury, Vol. 23, No. 7-8, 2009, pp. 675-685. doi:10.1080/02699050903014915
[202] M. F. Kraus, T. Susmaras, B. P. Caughlin, et al., “White Matter Integrity and Cognition in Chronic Traumatic Brain Injury: A Diffusion Tensor Imaging Study,” Brain, Vol. 130, No. 10, 2007, pp. 2508-2519. doi:10.1093/brain/awm216
[203] M. E. Shenton, H. M. Hamoda, J. S. Schneiderman, et al., “A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury,” Brain Imaging and Behavior, Vol. 6, No. 2, 2012, pp. 137-192. doi:10.1007/s11682-012-9156-5
[204] L. M. French, “Military Traumatic Brain Injury: An Examination of Important Differences,” Annals of the New York Academy of Sciences, Vol. 1208, 2010, pp. 38-45. doi:10.1111/j.1749-6632.2010.05696.x
[205] M. Chavko, W. A. Koller, W. K. Prusaczyk and R. M. McCarron, “Measurement of Blast Wave by a Miniature Fiber Optic Pressure Transducer in the Rat Brain,” Journal of Neuroscience Methods, Vol. 159, No. 2, 2007, pp. 277-281. doi:10.1016/j.jneumeth.2006.07.018
[206] S. Connell, J. Gao, J. Chen and R. Shi, “Novel Model to Investigate Blast Injury in the Central Nervous System,” Journal of Neurotrauma, Vol. 28, No. 7, 2011, pp. 12291236. doi:10.1089/neu.2011.1832
[207] I. Cernak, R. Vink, D. N. Zapple, et al., “The Pathobiology of Moderate Diffuse Traumatic Brain Injury as Identified Using a New Experimental Model of Injury in Rats,” Neurobiology of Disease, Vol. 17, No. 1, 2004, pp. 29-43. doi:10.1016/j.nbd.2004.05.011
[208] I. Cernak, Z. Wang, J. Jiang, X. Bian and J. Savic, “Ultrastructural and Functional Characteristics of Blast Injury-Induced Neurotrauma,” The Journal of Trauma, Vol. 50, No. 4, 2001, pp. 695-706. doi:10.1097/00005373-200104000-00017
[209] A. Saljo, F. Bao, J. Shi, et al., “Expression of C-Fos and C-Myc and Deposition of Beta-APP in Neurons in the Adult Rat Brain as a Result of Exposure to Short-Lasting Impulse Noise,” Journal of Neurotrauma, Vol. 19, No. 3, 2002, pp. 379-385. doi:10.1089/089771502753594945
[210] Y. Bhattacharjee, “Neuroscience. Shell Shock Revisited: Solving the Puzzle of Blast Trauma,” Science, Vol. 319, No. 5862, 2008, pp. 406-408. doi:10.1126/science.319.5862.406
[211] I. Cernak, “The Importance of Systemic Response in the Pathobiology of Blast-Induced Neurotrauma,” Frontiers in Neurology, Vol. 1, 2010, p. 151.
[212] V. Newcombe, G. Williams, J. Outtrim, et al., “Serial Diffusion Tensor Imaging Suggests Progressive Pathophysiology for Weeks Following Traumatic Brain Injury, and Possible White Matter Repair Months after Injury,” Proceedings of the 19th ISMRM Scientific Meeting & Exhibition, 2011, p. 4211.
[213] F.-P. G. Yang, C. Shetty, H. Lee, et al., “A Longitudinal Study of Microstructural White Matter Changes after Mild Traumatic Brain Injury,” Proceedings of the 19th ISMRM Scientific Meeting & Exhibition, 2011, p. 346.
[214] M. L. Lipton, N. Kim, Y. K. Park, et al., “Robust Detection of Traumatic Axonal Injury in Individual Mild Traumatic Brain Injury Patients: Intersubject Variation, Change over Time and Bidirectional Changes in Anisotropy,” Brain Imaging and Behavior, Vol. 6, No. 2, 2012, pp. 329-342. doi:10.1007/s11682-012-9175-2
[215] Z. Kou, Z. Wu, K. A. Tong, et al., “The Role of Advanced MR Imaging Findings as Biomarkers of Traumatic Brain Injury,” Journal of Head Trauma Rehabilitation, Vol. 25, No. 4, 2010, pp. 267-282. doi:10.1097/HTR.0b013e3181e54793
[216] R. W. Van Boven, G. S. Harrington, D. B. Hackney, et al., “Advances in Neuroimaging of Traumatic Brain Injury and Posttraumatic Stress Disorder,” Journal of Rehabilitation Research and Development, Vol. 46, No. 6, 2009, pp. 717-757. doi:10.1682/JRRD.2008.12.0161
[217] K. Zhang, B. Johnson, D. Pennell, et al., “Are Functional Deficits in Concussed Individuals Consistent with White Matter Structural Alterations: Combined FMRI & DTI Study,” Experimental Brain Research, Vol. 204, No. 1, 2010, pp. 57-70. doi:10.1007/s00221-010-2294-3
[218] H. S. Levin, E. Wilde, M. Troyanskaya, et al., “Diffusion Tensor Imaging of Mild to Moderate Blast-Related Traumatic Brain Injury and Its Sequelae,” Journal of Neurotrauma, Vol. 27, No. 4, 2010, pp. 683-694. doi:10.1089/neu.2009.1073
[219] M. Catani, “Diffusion Tensor Magnetic Resonance Imaging Tractography in Cognitive Disorders,” Current Opinion in Neurology, Vol. 19, No. 6, 2006, pp. 599-606. doi:10.1097/01.wco.0000247610.44106.3f

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.