Organic Thin Film Transistors Based on Distyryl-Oligothiophenes: Role of AFM Images in Analyses of Charge Transport Properties

Abstract

Significant advances have been made recently in the area of organic electronics and optoelectronics based on small molecules as a result of an improved chemistry and a better technology. Together with light emitting diodes and solar cells, transistors are among the most studied components. The development of new semiconductors induced a real improvement in organic thin film transistor’s performances. Additionally, the synthesis of new soluble and air-stable molecules with the ability to process the active materials at low temperatures over large areas on substrates such as plastic or paper provide unique technologies and generate new applications. However the control of the solid state structure has emerged as essential to realize the full intrinsic potential that organic semiconductors possess. Atomic force microscopy (AFM) was likely to contribute to a further advancement of knowledge. The ability of the AFM to produce three dimensional maps at the micro- and nanometer scale has greatly increased its popularity as an imaging tool. Recently, distyryl-oligothiophenes and their derivatives appear as a new class of molecular semiconductors. Detailed morphological studies of organic active layers based on such new semiconductors involved in organic thin film transistors (OTFTs) have brought a large knowledge about the impact of chemical and physico-chemical aspects on charge transport efficiency.

Share and Cite:

N. Yoshimoto, H. Brisset, J. Ackermann and C. Videlot-Ackermann, "Organic Thin Film Transistors Based on Distyryl-Oligothiophenes: Role of AFM Images in Analyses of Charge Transport Properties," Open Journal of Applied Sciences, Vol. 2 No. 4, 2012, pp. 283-293. doi: 10.4236/ojapps.2012.24042.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Binnig, C. F. Quate and Ch Geber, “Atomic Force Microscope,” Physical Review Letters, Vol. 56, No. 9, 1986, pp. 930-933. doi:10.1103/PhysRevLett.56.930
[2] A. Facchetti, M.-H. Yoon and T. J. Marks, “Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics,” Advanced Materials, Vol. 17, No. 14, 2005, pp. 1705-1725. doi:10.1002/adma.200500517
[3] T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, “Recent Progress in Organic Electronics: Materials, Devices, and Processes,” Chemistry of Materials, Vol. 16, No. 23, 2004, pp. 4413-4422. doi:10.1021/cm049614j
[4] S. R. Forrest, “The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic,” Nature, Vol. 428, No. 6986, 2004, pp. 911-918. doi:10.1038/nature02498
[5] B. Lucas, T. Trigaud and C. Videlot-Ackermann, “Organic Transistors and Phototransistors Based on Small Molecules,” Polymer International Journal (In Focus), Vol. 61, No. 3, 2012, pp. 374-389.
[6] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik and W. Weber, “High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors,” Journal of Applied Physics, Vol. 92, No. 9, 2002, pp. 5259-5263. doi:10.1063/1.1511826
[7] H. Yanagisawa, T. Tamaki, M. Nakamura and K. Kudo, “Structural and Electrical Characterization of Pentacene Films on SiO2 Grown by Molecular Beam Deposition,” Thin Solid Films, Vol. 464-465, 2004, pp. 398-402. doi:10.1016/j.tsf.2004.06.065
[8] C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura, N. Yoshimoto, P. Raynal, A. El Kassmi and F. Fages, “?,?-Distyryl-Oligothiophenes: High Mobility Semiconductors for Environmentally Stable Organic-Thin Film Transistors,” Journal of the American Chemical Society, Vol. 127, No. 47, 2005, pp. 16346-16347. doi:10.1021/ja054358c
[9] Y. Didane, G. H. Mehl, A. Kumagai, N. Yoshimoto, C. Videlot-Ackermann and H. Brisset, “A ‘Kite’ Shaped Styryl End-Capped Benzo[2,1-b:3,4-b’]Dithiophene with High Electrical Performances in Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 130, No. 52, 2008, pp. 17681-17683. doi:10.1021/ja807504k
[10] C. Videlot-Ackermann, J. Zhang, J. Ackermann, H. Brisset, Y. Didane, P. Raynal, A. El Kassmi and F. Fages, “PType and n-Type Quaterthiophene Based Semiconductors for Thin Film Transistors Operating in Air?” Current Applied Physics, Vol. 9, No. 1, 2009, pp. 26-33. doi:10.1016/j.cap.2007.10.087
[11] A. Facchetti, M. Mushrush, H. E. Katz and T. J. Marks, “N-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility,” Advanced Materials, Vol. 15, No. 1, 2003, pp. 33-38. doi:10.1002/adma.200390003
[12] C. Videlot-Ackermann, A. K. Diallo, H. Brisset, F. Fages, F. Serein-Spirau, J.-P. Lère-Porte, A. Kumagai and N. Yoshimoto, “Growth and Morphology Properties of Bis (2-Phenylethynyl) End-Substituted Oligothiophenes Based Thin Films,” Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 10, 2010, pp. 699-704.
[13] A. K. Diallo, C. Videlot-Ackermann, P. Marsal, H. Brisset, F. Fages, A. Kumagai, N. Yoshimoto, F. Serein-Spirau and J.-P. Lère-Porte, “Acetylenic Spacers in Phenyl End-Substituted Oligothiophene Core for Highly AirStable Organic Field-Effect Transistors,” Physical Chemistry Chemical Physics, Vol. 12, No. 15, 2010, pp. 38453851. doi:10.1039/b923352k
[14] L. Rapp, F. Serein-Spirau, J.-P. Lère-Porte, A. P. Alloncle, P. Delaporte, F. Fages and C. Videlot-Ackermann, “Laser Printing of Air-Stable High Performing Organic Thin Film Transistors,” Organic Electronics, Vol. 13, No. 10, 2012, pp. 2035-2041. doi:10.1016/j.orgel.2012.06.020
[15] C. Videlot-Ackermann, H. Brisset, J. Zhang, J. Ackermann, S. Nénon, F. Fages, P. Marsal, T. Tanisawa and N. Yoshimoto, “Influence of Phenyl Perfluorination on Charge Transport Properties of Distyryl-Oligothiophenes in Organic Field-Effect Transistors,” The Journal of Physical Chemistry C, Vol. 113, No. 4, 2009, pp. 1567-1574. doi:10.1021/jp8049262
[16] R. P. Ortiz, H. Brisset and C. Videlot-Ackermann, “Perfluoroarene Units in Distyryl-Oligothiophene Analogues: An Efficient Electron Density Confinement Preventing N-Type Transport in Organic Thin Film Transistors,” Synthetic Metals, Vol. 162, No. 9-10, 2012, pp. 857-861. doi:10.1016/j.synthmet.2012.03.008
[17] M. L. Tang and Z. Bao, “Halogenated Materials as Organic Semiconductors,” Chemistry of Materials, Vol. 23, No. 3, 2011, pp. 446-455. doi:10.1021/cm102182x
[18] Y. Jung, K.-J. Baeg, D.-Y. Kim, T Someya and S. Y. Park, “A Thermally Resistant and Air-Stable N-Type Organic Semiconductor: Naphthalene Diimide of 3,5-Trifluoromethyl Aniline,” Synthetic Metals, Vol. 159, No. 19-20, 2009, pp. 2117-2121. doi:10.1016/j.synthmet.2009.08.004
[19] Y. Didane, R. P. Ortiz, J. Zhang, K. Aosawa, T. Tanisawa, H. Aboubakr, F. Fages, J. Ackermann, N. Yoshimoto, H. Brisset and C. Videlot-Ackermann, “Towards N-Channel Organic Thin Film Transistors Based on a Distyryl-Bithiophene Derivative,” Tetrahedron, Vol. 68, No. 24, 2012, pp. 4664-4671. doi:10.1016/j.tet.2012.04.020
[20] Y. Didane, P. Marsal, F. Fages, A. Kumagai, N. Yoshimoto, H. Brisset and C. Videlot-Ackermann, “Core-Cyanated Distyryl-Bithiophene: Synthesis and Impact on Charge Transport in Field Effect Transistors,” Thin Solid Films, Vol. 519, No. 2, 2010, pp. 578-586. doi:10.1016/j.tsf.2010.07.005
[21] Y. Didane, C. Martini, M. Barret, S. Sanaur, P. Collot, J. Ackermann, F. Fages, A. Suzuki, N. Yoshimoto, H. Brisset and C. Videlot-Ackermann, “Comparison of P-Channel Transistors Based on ?,?-Hexyl-Distyryl-Bithiophene Prepared Using Various Film Deposition Methods,” Thin Solid Films, Vol. 518, No. 18, 2010, pp. 5311-5320. doi:10.1016/j.tsf.2010.03.079

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.