Observed Enhancement in LIBS Signals from Nano vs. Bulk ZnO Targets: Comparative Study of Plasma Parameters

Abstract

In this article, we will report an experimental evidence of enhanced LIBS emission upon replacing a Bulk-Based ZnO target by the corresponding Nano-Based target. The plasma was initiated via interaction of a Nd:YAG laser at the fundamental wavelength with both targets in open air under the same experimental conditions. The measurements show an enhanced emission from the Zn I-lines at the wavelengths of 328.26, 330.29, 334.55, 468.06, 472.2, 481.01, 636.38 nm. The measurements were repeated at different delay times in the range from 1 to 5 μs at constant irradiation level and fixed gate time of 1 μs. The average enhancement over the different Zn I-lines was found increases exponentially up to 8-fold with delay time. The electron density to each plasma was measured utilizing the Hα-line appeared in the emitted spectra from each plasma and was found to give similar values. The electron temperatures were measured via Boltzmann plot method utilizing the relative intensities of the Zn I-lines and were found to give very close values. Moreover, the relative population density of the ground state of the zinc atoms (relative concentration) was measured spectroscopically utilizing the Boltzmann plot method and was found to increase in a very similar trend to that of enhancement. The results of the spectroscopic analysis conclude that these signal enhancements can be attributed to the higher concentration of neutral atoms in the Nano-Based material plasma with respect to the corresponding Bulk-based ZnO material.

Share and Cite:

A. Sherbini, A. Aboulfotouh, F. Rashid, S. Allam, A. Dakrouri and T. Sherbini, "Observed Enhancement in LIBS Signals from Nano vs. Bulk ZnO Targets: Comparative Study of Plasma Parameters," World Journal of Nano Science and Engineering, Vol. 2 No. 4, 2012, pp. 181-188. doi: 10.4236/wjnse.2012.24024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. A. Rusak, B. C. Castle, B. W. Smith and J. D. Winefordner, “Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy,” Critical Reviews in Analytical Chemistry, Vol. 27, No. 4, 1997, pp. 257-290. Hdoi:10.1080/10408349708050587
[2] M. Kuzuya and H. Aranami, “Analysis of a High-Concentration Copper in Metal Alloys by Emission Spectroscopy of a Laser-Produced Plasma in Air at Atmospheric Pressure,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 55, No. 9, 2000, pp. 1423-1430. Hdoi:10.1016/S0584-8547(00)00246-9
[3] M. Jankowsk and G. ?liwiński, “Acoustic Monitoring for the Laser Cleaning of Sandstone,” Journal of Cultural Heritage, Vol. 4, No. 1, 2003, pp. 65-71.
[4] M. Chappé, J. Hildenhagen, K. Dickmann and M. Bredol, “Laser Irradiation of Medieval Pigments at IR, VIS and UV Wavelengths,” Journal of Cultural Heritage, Vol. 4, No. 1, 2003, pp. 264-270. Hdoi:10.1016/S1296-2074(02)01206-2
[5] F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falkb and C. Becker, “Analysis of Heavy Metals in Soils Using Laser-Induced Breakdown Spectrometry Combined with Laser-Induced Fluorescence,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 56, No. 6, 2001, pp. 933- 945. Hdoi:10.1016/S0584-8547(01)00213-0
[6] A. Jurado-López and M. D. Luque de Castro, “Laser- Induced Breakdown Spectrometry in Jewellery Industry, Part II: Quantitative Characterization of Gold-Filled Interface,” Talanta, Vol. 59, No. 2, 2003, pp. 409-415. Hdoi:10.1016/S0039-9140(02)00527-1
[7] H.-J. Kunze, “Introduction to Plasma Spectroscopy,” Springer Series on Atomic, Optical and Plasma Physics, Vol. 56, Springer, Berlin, 2009.
[8] H. R. Griem, “Plasma Spectroscopy,” McGrow-Hill, Inc., New York, 1964.
[9] V. Lazic, F. Colao, R. Fantoni and V. Spizzicchino, “Laser-Induced Breakdown Spectroscopy in Water: Improvement of the Detection Threshold by Signal Processing,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 60, No. 7-8, 2005, pp. 1002-1013. Hdoi:10.1016/j.sab.2005.06.007
[10] D. Alamelu, A. Sarkar and S. K. Aggarwal, “Laser-Induced Breakdown Spectroscopy for Simultaneous Determination of Sm, Eu and Gd in Aqueous Solution,” Talanta, Vol. 77, No. 1, 2008, pp. 256-261. Hdoi:10.1016/j.talanta.2008.06.021
[11] V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson and A. W. Miziolek, “Double Pulse Laser Ablation and Plasma: Laser Induced Breakdown Spectroscopy Signal Enhancement,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, No. 9, 2006, pp. 999-1014. Hdoi:10.1016/j.sab.2006.09.003
[12] C. Sánchez-Aké, M. Bola?os and C. Z. Ramírez, “Emission Enhancement Using Two Orthogonal Targets in Double Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 64, No. 9, 2009, pp. 857-862. Hdoi:10.1016/j.sab.2009.07.001
[13] V. Pi?on and D. Anglos, “Optical Emission Studies of Plasma Induced by Single and Double Femtosecond Laser Pulses,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 64, No. 10, 2009, pp. 950-960. Hdoi:10.1016/j.sab.2009.07.036
[14] D. E. Roberts, A. du Plessis, J. Steyn, L. R. Botha, C. A. Strydom and I. J. van Rooyen, “Femtosecond Laser Induced Breakdown Spectroscopy of Silver within Surrogate High Temperature Gas Reactor Fuel Coated Particles,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 65, No. 11, 2010, pp. 918-926. Hdoi:10.1016/j.sab.2010.09.001
[15] C. P. Poole and F. J. Owens Jr., “Introduction to Nanotechnology,” John Wiley & Sons, Inc., Hoboken, 2003.
[16] J. Chen, Z. Xiu, V. L. Gregory and J. J. A. Pedro, “Effect of Natural Organic Matter on Toxicity and Reactivity of Nano-Scale Zero-Valent Iron,” Water Research, Vol. 45, No. 5, 2011, pp. 1995-2001. Hdoi:10.1016/j.watres.2010.11.036
[17] T. V. Shubina, D. S. Plotnikov, A. Vasson, J. Leymarie, M. Larsson, P. O. Holtzc, B. Monemarc, H. Lu, W. J. Schaffd and P. S. Kop’ev, “Surface-Plasmon Resonances in Indium Nitride with Metal-Enriched Nano-Particles,” Journal of Crystal Growth, Vol. 288, No. 2, 2006, pp. 230-235. Hdoi:10.1016/j.jcrysgro.2005.12.003
[18] M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, “Nanoring as a Magnetic or Electric Field Sensitive Nano-Antenna for Near-Field Optics Applications,” Optics Communications, Vol. 270, No. 2, 2007, pp. 447-454. Hdoi:10.1016/j.optcom.2006.09.020
[19] P. Adamson, “Optical Diagnostics of Nanoscale Dielectric Layers on Interference Films by Polarization-Dependent Differential Reflectivity,” Optics Communications, Vol. 268, No. 1, 2006, pp. 174-181. Hdoi:10.1016/j.optcom.2006.07.004
[20] R. Yang, P. A. Christensen, T. A. Egerton and J. R. White, “Degradation Products Formed during UV Exposure of Polyethylene ZnO Nano-Composites,” Polymer Degradation and Stability, Vol. 95, No. 9, 2010, pp. 1533-1541. Hdoi:10.1016/j.polymdegradstab.2010.06.010
[21] A. M. EL Sherbini and A. S. AL Aamer, “Development of a Simple Software Program Used for Evaluation of Plasma Electron Density in LIBS Experiments via Spectral Line Shape Analysis,” Journal of Signal and Information Processing, Vol. 3, No. 4, 2012, pp. 502-515.
[22] A. M. El Sherbini, H. Hegazy and Th. M. El Sherbini, “Measurement of Electron Density Utilizing the Hα-line from Laser Produced Plasma in Air,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, No. 5, 2006, pp. 532-539. Hdoi:10.1016/j.sab.2006.03.014
[23] J. A. Aguilera and C. Aragón, “Multi-Element Saha- Boltzmann and Boltzmann Plots in Laser-Induced Plasmas,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 62, No. 4, 2007, pp. 378-385. Hdoi:10.1016/j.sab.2007.03.024
[24] J. A. Aguilera and C. Aragón, “Characterization of Laser- Induced Plasmas by Emission Spectroscopy with Curve- of-Growth Measurements. Part II: Effect of the Focusing Distance and the Pulse Energy,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 63, No. 7, 2008, pp. 793-799. Hdoi:10.1016/j.sab.2008.04.013

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.