Share This Article:

The prevention of oxidative stress improve asthmatic inflammation

Abstract Full-Text HTML XML Download Download as PDF (Size:139KB) PP. 1087-1090
DOI: 10.4236/abb.2012.38132    4,474 Downloads   7,285 Views   Citations

ABSTRACT

Asthma is a disease characterized by airway chronic inflammation and bronchial hyperactivity, involving the imbalance of oxidative and antioxidative agents. There is an increased free radical generation and a decreased antioxidant enzyme activity, which correlate with the severity of the disease. The oxidative stress triggers specific physiopathological changes in the respiratory tract as a result of proinflammatory molecule formation, such as isoprostanes and PAF- like lipids. The synthesis of these mediators is dependent on the availability of lipid substrates, such as PUFAs, which are present in cell membranes. Therefore, lipid oxidation may have an important role in the perpetuation and amplification of the asthmatic inflammatory response. This article will make considerations about how oxidative stress contributes to asthma pathogenesis.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Nishiyama, A. , Zanatta, A. and Junior, P. (2012) The prevention of oxidative stress improve asthmatic inflammation. Advances in Bioscience and Biotechnology, 3, 1087-1090. doi: 10.4236/abb.2012.38132.

References

[1] Voynow, J.A. and Kummarapurugu, A. (2011) Isoprostanes and asthma. Biochimica et Biophysica Acta, 1810, 1091-1095. doi:10.1016/j.bbagen.2011.04.016
[2] Kim, B.J. and Hong, S.J. (2012) Ambient air pollution and allergic diseases in children. Korean Journal of Pediatrics, 55, 185-192.
[3] Chung, K.F. and Marwick, J.A. (2010) Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Annals of the New York Academy of Sciences, 1203, 85-91. doi:10.1111/j.1749-6632.2010.05600.x
[4] Astudillo, A.M., Perez-Chacon, G., Balboa, M.A. and Balsinde, J. (2009) Arachidonic acid mobilization by stim- uli of the innate immune response. Inmunología, 28, 182-192. doi:10.1016/S0213-9626(09)70041-1
[5] Zimmerman, G.A., McIntyre, T.M., Prescott, S.M. and Stafforini, D.M. (2002) The plateletactivating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Critical Care Medicine, 30, S294-S301. doi:10.1097/00003246-200205001-00020
[6] Marathe, G.K., Prescott, S.M., Zimmerman, G.A. and McIntyre, T.M. (2001) Oxidized LDL contains inflammatory PAF-like phospholipids. Trends in Cardiovascular Medicine, 11, 139-142. doi:10.1016/S1050-1738(01)00100-1
[7] Uhlig, S., Goggel, R. and Engel, S. (2005) Mechanisms of platelet-activating factor (PAF)-mediated responses in the lung. Pharmacological Reports, 57, 206-221.
[8] Muehlmann, L.A., et al. (2010) Dietary supplementation with soybean lecithin increases pulmonary PAF bioactivity in asthmatic rats. The Journal of Nutritional Biochemistry, 21, 532-537. doi:10.1016/j.jnutbio.2009.03.001
[9] Hsieh, K.H. and Ng, C.K. (1993) Increased plasma platelet-activating factor in children with acute asthmatic attacks and decreased in vivo and in vitro production of platelet-activating factor after im-munotherapy. Journal of Allergy and Clinical Immunology, 91, 650-657. doi:10.1016/0091-6749(93)90271-G
[10] Marathe, G.K., et al. (2000) Bioactive phospholipid oxidation products. Free Radical Biology & Medicine, 28, 1762-1770. doi:10.1016/S0891-5849(00)00234-3
[11] Cracowski, J.L., Durand, T. and Bessard, G. (2002) Isoprostanes as a biomarker of lipid peroxidation in humans: Physiology, pharmacology and clinical implications. Journal of Pharmacological Sciences, 23, 360-366.
[12] Frankel, E.N. (1984) Lipid oxidation—Mechanisms, products and biological significance. Journal of the American Oil Chemists Society, 61, 1908-1917. doi:10.1007/BF02540830
[13] Wood, L.G., Gibson, P.G. and Garg, M.L. (2003) Biomarkers of lipid peroxidation, airway inflammation and asthma. European Respiratory Journal, 21, 177-186. doi:10.1183/09031936.03.00017003a
[14] Basu, S. (2010) Bioactive eicosanoids: Role of prostaglandin F(2alpha) and F(2)-isoprostanes in inflammation and oxidative stress related pathology. Molecules and Cells, 30, 383-391. doi:10.1007/s10059-010-0157-1
[15] Smiley, P.L., Stremler, K.E., Prescott, S.M., Zimmerman, G.A. and McIntyre, T.M. (1991) Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor. The Journal of Biological Chemistry, 266, 11104-11110.
[16] Pégorier, S., Stengel, D., Durand, H., Croset, M. and Ninio, E. (2006) Oxidized phospholipid: POVPC binds to platelet-activating-factor receptor on human macrophages Implications in atherosclerosis. Atherosclerosis, 188, 433- 443. doi:10.1016/j.atherosclerosis.2005.11.015
[17] Marathe, G.K., et al. (1999) Inflammatory platelet activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines. The Journal of Biological Chemistry, 274, 28395-28404. doi:10.1074/jbc.274.40.28395
[18] Prescott, S.M., Zimmerman, G.A. Stafforini, D.M. and Thomas, M.M. (2000) Platelet-activating factor and related lipid mediators. Annual Review of Biochemistry, 69, 419-445. doi:10.1146/annurev.biochem.69.1.419
[19] Comhair, S.A. and Erzurum, S.C. (2010) Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling, 12, 93-124. doi:10.1089/ars.2008.2425
[20] Nadeem, A., Chhabra, S.K., Masood, A. and Raj, H.G. (2003) Increased oxidative stress and altered levels of antioxidants in asthma. Journal of Allergy and Clinical Immunology, 111, 72-78. doi:10.1067/mai.2003.17
[21] Reynaert, N.L., et al. (2007) Catalase overexpression fails to attenuate allergic airways disease in the mouse. The Journal of Immunology, 178, 3814-3821.
[22] Owayed, A., Dhaunsi, G.S. and Al-Mukhaizeem, F. (2008) Nitric oxidemediated activation of NADPH oxidase by salbutamol during acute asthma in children. Cell Biochemistry and Function, 26, 603-608. doi:10.1002/cbf.1484
[23] Peri?i?, T., Sreckovic, M. and Matic, G. (2007) An imbalance in antioxidant enzymes and stress proteins in childhood asthma. Clinical Biochemistry, 40, 1168-1171. doi:10.1016/j.clinbiochem.2007.06.006
[24] Kaleli, S., Akkaya, A., Akdogan, M. and Gültekin, F. (2006) The effects of different treatments on prolidase and antioxidant enzyme activities in patients with bronchial asthma. Environmental Toxicology and Pharma- cology, 22, 35-39. doi:10.1016/j.etap.2005.11.001
[25] Mak, J.C.W., et al. (2004) Systemic oxidative and antioxidative status in Chinese patients with asthma. Journal of Allergy and Clinical Immunology, 114, 260-264. doi:10.1016/j.jaci.2004.05.013
[26] Zimmerman, G.A., Prescott, S.M. and McIntyre, T.M. (1995) Oxidatively fragmented phospholipids as inflammatory mediators: The dark side of polyunsaturated lipids. Journal of Nutrition, 125, 1661S-1665S.
[27] Lee, I.T. and Yang, C.M. (2012) Role of NADPH oxidase/ROS in proinflammatory mediators-induced airway and pulmonary diseases. Biochemical Pharmacology, 84, 581-590. doi:10.1016/j.bcp.2012.05.005
[28] Nurmatov, U., Devereux, G. and Sheikh, A. (2011) Nutrients and foods for the primary prevention of asthma and allergy: Systematic review and metaanalysis. Journal of Allergy and Clinical Immunology, 127, 724-733. doi:10.1016/j.jaci.2010.11.001

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.