One-pot Synthesis of TiO2 Nanoparticles in Suspensions for Quantification of Titanium Debris Release in Biological Liquids

Abstract

In this work we have developed an analytical method to measure potential titanium debris released from TiO2 nanotube layers devices immersed in biological fluids. This quantitative study is highly required to ensure both the security and non toxicity of the nanostructured surfaces used as future implantable medical devices in the living. A one-pot synthesis process is developed to produce high quality standard solutions of titanium dioxide nanoparticles in aqueous medium. The elaborated dispersion is then used to fabricate standard solutions in both aqueous and human blood plasma media. The synthesized nanoparticles dispersion was characterized by granulometry. The nanoparticles structure and morphology were then observed using Transmission Electron Microscopy (TEM). Thermogravimetric Analysis (TGA) was used to evaluate the concentration of TiO2 in the suspension. A quantitative routine by the use of Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) is developed. The quantification threshold of titanium species is found to be in the 30 - 40 ppb range. None interference is detected between the particles and the human blood plasma. Using the established quantitative routine, the titanium species release from titania nanotube layers in human blood plasma is evaluated.

Share and Cite:

Massard, C. , Bourdeaux, D. , Raspal, V. , Feschet-Chassot, E. , Sibaud, Y. , Caudron, E. , Devers, T. and Awitor, K. (2012) One-pot Synthesis of TiO2 Nanoparticles in Suspensions for Quantification of Titanium Debris Release in Biological Liquids. Advances in Nanoparticles, 1, 86-94. doi: 10.4236/anp.2012.13012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Ercan, E. Taylor, E. Alpaslan and T. J. Webster, “Diameter of Titanium Nanotubes Influences AntiBacterial Efficacy,” Nanotechnology, Vol. 22, No. 29, 2011, p. 295102. doi:10.1088/0957-4484/22/29/295102
[2] S. Oh, C. Daraio, L. H. Chen, T. R. Pisanic, R. R. Finones, and S. Jin, “Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes,” Journal of Biomedical Materials Research Part A, Vol. 78, No. 1, 2006, pp. 97-103. doi:10.1002/jbm.a.30722
[3] S. M. Z. Khaled, R. J. Miron, D. W. Hamilton, P. A. Charpentier and A. S. Rizkalla, “Reinforcement of Resin Based Cement with Titania Nanotubes,” Dental Materials, Vol. 26, No. 2, 2010, pp. 169-178. doi:10.1016/j.dental.2009.09.011
[4] K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes, and T. A. Desai, “Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for Medical Implants?” Small, Vol. 3, No. 11, 2007, pp. 1878-1881. doi:10.1002/smll.200700412
[5] D.-H. Kwak, Ji.-B. Yoo, and D. J. Kim, “Drug Release Behavior from Nanoporous Anodic Aluminum Oxide,” Journal of Nanoscience and Nanotechnology, Vol. 10, No. 1, 2010, pp. 345-348. doi:10.1166/jnn.2010.1531
[6] L. J. Zhang and T. J. Webster, “Nanotechnology and Nanomaterials: Promises for Improved Tissue Regeneration,” Nano Today, Vol. 4, No. 1, 2009, pp. 66-80. doi:10.1088/0957-4484/20/17/175101
[7] M. Sinn Aw, S. Simovic, J. Addai-Mensah and D. Losic, “Polymeric Micelles in Porous and Nanotubular Implants as a New System for Extended Delivery of Poorly Soluble Drugs,” Journal of Materials Chemistry, Vol. 21, No. 20, 2011, pp. 7082-7089. doi:10.1039/c0jm04307a
[8] J. L. Perry, C. R. Martin, and J. D. Stewart, “Drug-Delivery Strategies by Using Template-Synthesized Nanotubes,” Chemistry—A European Journal, Vol. 17, No. 23, 2011, pp. 6296-6302. doi:10.1002/chem.201002835
[9] Gultepe, Evin and Nagesha, Dattatri and Sridhar, Srinivas and Amiji, Mansoor. “Nanoporous Inorganic Membranes or Coatings for Sustained Drug Delivery in Implantable Devices,” Advanced Drug Delivery Reviews, Vol. 62, 2010, pp. 305-315. doi:10.1016/j.addr.2009.11.003
[10] S. Minagar, C. C. Berndt, J. Wang, E. Ivanova and C. Wen, “A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces,” ActaBiomaterialia, Vol. 8, No. 8, 2012, pp. 2875-2888. doi:10.1016/j.actbio.2012.04.005
[11] E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben and B. van Ravenzwaay, “Tissue Distribution and Toxicity of Intravenously Administered Titanium Dioxide Nanoparticles in Rats,” Archives of toxicology, Vol. 82, No. 3, 2008, pp. 151-157. doi:10.1007/s00204-007-0253-y
[12] J. Wu, W. Liu, C. Xue, S. Zhou, F. Lan, L. Bi, H. Xu, X. Yang and F. D. Zeng, “Toxicity and Penetration of TiO2 Nanoparticles in Hairless Mice and Porcine Skin after Subchronic Dermal Exposure,” Toxicology letters, Vol. 191, No. 1, 2009, pp. 1-8. doi:10.1016/j.toxlet.2009.05.020
[13] J. Chen, X. Dong, J. Zhao and G. Tang, “In Vivo Acute Toxicity of Titanium Dioxide Nanoparticles to Mice after Intraperitioneal Injection,” Journal of Applied Toxicology, Vol. 29, No. 4, 2009, pp. 330-337. doi:10.1002/jat.1414
[14] E. Feschet-Chassot, V. Raspal, Y. Sibaud, O. K. Awitor, F. Bonnemoy, J. L. Bonnet and J. Bohatier, “Tunable Functionality and Toxicity Studies of Titanium Dioxide Nanotube Layers,” Thin Solid Films, Vol. 519, No. 8, 2011, pp. 2564-2568. doi:10.1016/j.tsf.2010.12.184
[15] ICH, “Validation of Analytical Procedure, Text and Methodology Q2(R1),” Federal Register, Vol. 62, No. 96, 2005, pp. 27463-27467.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.