ZnO Nanobelts: An Efficient Catalyst for Synthesis of 5-Arylidine-2,4-Thiazolidinediones and 5-Arylidine-Rhodanines

Abstract

A facile preparation of ZnO nanobelts by chemical precipitation technique and its utility as catalyst in Knoevenagel condensation of 2,4-thiazolidinedione/rhodanine has been described. X-ray diffraction and transmission electron microscopy techniques revealed the formation ZnO nanobelts. Scanning electron microscopic observations indicate that the lengths of nanobelts are ranging from a few hundreds of micrometers to a few millimeters. Its use for the condensation of aldehydes and active methylene compounds under solvent free reaction condition at 90℃ afforded the corresponding products in excellent yields in minute time.

Share and Cite:

 , S. and Sandhu, J. (2012) ZnO Nanobelts: An Efficient Catalyst for Synthesis of 5-Arylidine-2,4-Thiazolidinediones and 5-Arylidine-Rhodanines. International Journal of Organic Chemistry, 2, 305-310. doi: 10.4236/ijoc.2012.223042.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Hosseini-Sarvari and H. Sharghi, “ZnO as a new catalyst for N-formylation of amines under solvent-free conditions,” Journal of Organic Chemistry, Vol. 71, No. 17, 2006, pp. 6652-6654. DOI: 10.1021/jo060847z
[2] H. Sharghi, and M. Hosseini, “Solvent-free and one-step Beckmann rearrangement of ketones and aldehydes by zinc oxide,” Synthesis, Vol. 2002, No. 8, 2002, pp. 1057 1060. doi:10.1055/s-2002-28520
[3] M. Z. Kassaee, F. Movahedi and H. Masrouri, “ZnO nanoparticles as an efficient catalyst for the one-pot synthesis of α-amino phosphonates,” Synlett, Vol. 2009, No. 8, 2009, pp.1326-1330. doi:10.1055/s-0028-1088135
[4] M. Hosseini-Sarvari and H. Sharghi, “Reactions on a solid surface. A simple, economical and efficient Friedel Crafts acylation reaction over zinc oxide (ZnO) as a new catalyst,” Journal of Organic Chemistry, Vol. 69, No. 20, 2004, pp. 6953-6956. doi:10.1021/jo0494477
[5] X. Y. Kong and Z. L. Wang, “Polar-Surface Dominated ZnO Nanobelts and the Electrostatic Energy Induced Nanohelixes, Nanosprings, and Nanospirals,” Applied Physics Letters, Vol. 84, No. 6, 2004, pp. 975-977. doi:10.1063/1.1646453
[6] P. Sharma, A. K. Gupta, V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio, B. Johansson and G. A. Gehring, “Ferromagnetism above Room Temperature In Bulk and Transparent Thin Films of Mn-doped ZnO,” Nature Material, Vol. 2, No. 10, 2003, pp. 673-677. doi:10.1038/nmat984
[7] M. Catti, Y. Noel and R. Dovesi, “Full Piezoelectric Ten sors of Wurtzite and Zinc Blende ZnO and ZnS by First-Principles Calculations,” Journal Physics and Che mistry Solids, Vol. 64, No. 11, 2003, pp. 2183-2190. doi:10.1016/S0022-3697(03)00219-1
[8] X. Wang, Y. Ding, C. J. Summers and Z. L. Wang, “Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts,” Journal of Physical Chemistry: B, Vol. 108, No. 26, 2004, pp. 8773-8777. doi:10.1021/jp048482e
[9] B. B. Lakshmi, C. J. Patrissi and C. R. Martin, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro and Nanostructures,” Chemistry of Materials, Vol. 9, No. 11, 1997, pp. 2544-2550. doi:10.1021/cm970268y
[10] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chemistry of Materials, Vol. 13. No. 12, 2001, pp. 4395-4398. doi:10.1021/cm011160s
[11] C. Pacholski, A. Kornowski and H. Weller, “Self-As sembly of ZnO: From Nanodots to Nanorods,” Ange wandte Chemie International Edition, Vol. 41, No. 7, 2002, pp. 1188-1191. doi:10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
[12] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Advanced Materials, Vol. 15, No. 5, 2003, pp. 464-466. doi:10.1002/adma.200390108
[13] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” Journal of the American Chemical Society, Vol. 125, No. 15, 2003, pp 4430-4431. doi:10.1021/ja0299452
[14] H. Zhang, X. Y. Ma, J. Xu, J. J. Niu and D. R. Yang, “Arrays of ZnO nanowires Fabricated By A Simple Chemical Solution Route,” Nanotechnology, Vol. 14, No. 4, 2003, pp. 423-426. doi:10.1088/0957-4484/14/4/303
[15] M. Hosseini-Sarvari, “Greener Solvent-Free Reactions on ZnO,” In: M. Kidwai and N. K. Mishra, Eds., Green Chemistry—Environmentally Benign Approaches, InTech Janeza Trdine, Rijeka, 2012, p. 103. doi:10.5772/1996
[16] R. T. Carroll, D. E. Dluzen, H. Stinnet, P. S. Awale, M. O. Funk and W. J. Geldenhuys, “Structure-Activity Relation ship and Docking Studies of Thiazolidinedione-Type Compounds with Monoamine Oxidase B,” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 16, 2011, pp. 4798-4803. doi:10.1016/j.bmcl.2011.06.060
[17] G. Bruno, L. Costantino, C. Curinga, R. Maccari, F. Monforte, F. Nicolò, R. Ottanà and M. G. Vigorita, “Syn thesis and Aldose Reductase Inhibitory Activity of 5 Arylidene-2,4-thiazolidinediones,” Bioorganic & Medi cinal Chemistry, Vol. 10, No. 4, 2002, pp. 1077-1084.
[18] M. V. Diurno, O. Mazzoni, G. Correale, I. G. Monterrey, A. Calignano, G. L. Rana and A. Bolognese, “Synthesis and Structure-Activity Relationships of 2-(Substituted phenyl)-3-3-(N,N-dimethylamino)propyl.-1,3-thiazolidin-4-ones Acting as H1-Histamine Antagonists,” IL Farmaco, Vol. 54, No. 9, 1999, pp. 579-583. doi:10.1016/S0014-827X(99)00064-6
[19] N. Ergenc and G. Capan, “Synthesis and Anticonvulsant Activity of New 4-Thiazolidone and 4-Thiazoline Deri vatives,” IL Farmaco, Vol. 49, No. 6, 1994, pp. 449-451.
[20] E. Piscapo, M. V. Diurno, R. Gagliardi and O. Mazzoni, “Studies on Heterocyclic Compounds: 1,3-Thiazolidin-4 one Derivatives. IV. Biological Activity of Variously Substituted 2,3-Diaryl-1,3-thiazolidin-4-ones,” Bollettino della Società Italiana di Biologia Sperimentale, Vol. 65, No. 9, 1989, pp. 853-859.
[21] T. Previtera, M. G. Vigorita, M. Bisila, F. Orsini, F. Benetolla and G. Bombieri, “3, 3’-Di1,3-thiazolidine-4 one System, VI: Structural and Conformational Studies on Configurational Isomers with Antihistaminic Activ ity,” European Journal of Medicinal Chemistry, Vol. 29, No. 4, 1994, pp. 317-324. doi:10.1016/0223-5234(94)90102-3
[22] D. Havrylyuka, B. Zimenkovskya and R. Lesyka, “Syn thesis and Anticancer Activity of Novel Nonfused Bicyc lic Thiazolidinone Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 184, No. 3, 2009, pp. 638-650.
[23] R. K. Rawal, Y. S. Prabhakar, S. B. Katti and E. De Clercq, “2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as Selective HIV-RT Inhibitors,” Bioorganic & Medicinal Chemistry, Vol. 13, No. 24, 2005, pp. 6771-6776. doi:10.1016/j.bmc.2005.07.063
[24] Y. Wu, S. Karna, C. H. Choi, M. Tong, H. H. Tai, D. H. Na, C. H. Jang and H. Cho, “Synthesis and Biological Evaluation of Novel Thiazolidinedione Analogues as 15 Hydroxyprostaglandin Dehydrogenase Inhibitors,” Jour nal of Medicinal Chemistry, Vol. 54, No. 14, 2011, pp. 5260-5264. doi:10.1021/jm200390u
[25] Y. Adachi, Y. Suzuki, N. Homma, M. Fukazawa, K. Tamura, I. Nishie and O. Kuromaru, “The Anti-Ischemic Effects of CP-060S during Pacing-Induced Ischemia in Anesthetized Dogs,” European Journal of Pharmacology, Vol. 367, No. 2-3, 1999, pp. 267-273. doi:10.1016/S0014-2999(98)00938-8
[26] I. G. Safonov, D. A. Heerding, R. M. Keenan, A. T. Price, C. L. Erickson-Muller, C. B. Hopson, J. L. Levin, K. A. Lord and P. M. Tapley, “New Benzimidazoles as Throm bopoietin Receptor Agonists,” Bioorganic & Medicinal Chemistry Letters, Vol. 16, No. 5, 2006, pp. 1212-1216. doi:10.1016/j.bmcl.2005.11.096
[27] B. B. Lohray, V. Bhushan, P. B. Rao, G. R. Madhavan, N. Murali, K. N. Rao, K. A. Reddy, B. M. Rajesh, P. G. Reddy, R. Chakrabarti and R. Rajagopalan, “Novel Indole Containing Thiazolidinedione Derivatives as Potent Eu glycemic and Hypolipidaemic Agents,” Bioorganic & Medicinal Chemistry Letters, Vol. 7, No. 7, 1997, pp. 785-788. doi:10.1016/S0960-894X(97)00118-2
[28] J. F. Zhou, F. X. Zhu, Y. Z. Song and Y. L. Zhu, “Synthesis of 5-Arylalkylidenerhodanines Catalyzed by Tetrabutylammonium Bromine in Water under Micro wave Irradiation,” Arkivoc, Vol. 14, 2006, pp. 175-180.
[29] U. R. Pratap, D. V. Jawale, R. A. Waghmare, D. L. Lingampalle and R. A. Mane, “Synthesis of 5-Arylidene 2,4-thiazolidinediones by Knoevenagel Condensation Ca talyzed by Baker’s Yeast,” New Journal of Chemistry, Vol. 35, No. 1, 2011, pp. 49-51. doi:10.1039/c0nj00691b
[30] J. P. Powers, D. E. Piper, Y. Li, V. Mayorga, J. Anzola, J. M. Chen, J. C. Jaen, G. Lee, J. Liu, M. G. Peterson, G. R. Tonn, Q. Y. Ye, N. P. C. Walker and Z. Wang, “SAR and Mode of Action of Novel Non-Nucleoside Inhibitors of Hepatitis C NS5b RNA polymerase,” Journal of Medi cinal Chemistry, Vol. 49, No. 3, 2006, pp. 1034-1046. doi:10.1021/jm050859x
[31] M. L. Wrobleski, G. A. Reichard, S. Paliwal, S. Shah, H. C. Tsui, R. A. Duffy, J. E. Lachowicz, C. A. Morgan, G. B. Varty and N. Y. Shih, “Cyclobutane Derivatives as Potent NK1 Selective Antagonists,” Bioorganic & Medi cinal Chemistry Letters, Vol. 16, No. 14, 2006, pp. 3859 3863. doi:10.1016/j.bmcl.2006.04.031
[32] A. Alizadeh, M. M. Khodaei and A. Eshghi, “A Solvent Free Protocol for the Green Synthesis of Arylalkylide nerhodanines in a Task-Specific Ionic Liquid,” Candian Journal of Chemistry, Vol. 88, 2010, pp. 514-518.
[33] D. V. Jawale, U. R. Pratap, D. L. Lingampalle and R. A. Mane, “Dicationic Ionic Liquid Mediated Synthesis of 5-Arylidine-2,4-thiazolidinediones,” Chinese Journal of Chemistry, Vol. 29, No. 5, 2011, pp. 942-946. doi:10.1002/cjoc.201190192
[34] K. Gong, Z. W. He, Y. Xu, D. Fang and Zu-L. Liu, “Synthesis of 5-Benzylidene Rhodanine Derivatives Catalyzed by 1-Butyl-3-Methyl Imidazolium Hydroxide In Water,” Monatshefte für Chemie, Vol. 139, No. 8, 2008, pp. 913-915. doi:10.1007/s00706-008-0871-y
[35] D.-H. Yang, Z.-C. Chen, S.-Y. Chen and Q.-G. Zheng, “Organic Reactions in Ionic Liquids; Ionic Liquid Acce lerated Three-Component Reaction: A Rapid One-Pot Synthesis of 3-Alkyl-5-(Z)-arylmethylidene-1,3-thiazoli dine-2,4-diones,” Synthesis, Vol. 2003, No. 12, 2003, pp. 1891 1894. doi:10.1055/s-2003-40980
[36] M. K. Hossain, S. C. Ghosh, Y. Boontongkong, C. Thanachayanont and J. Dutta, “Growth of Zinc Oxide Nanowires and Nanobelts for Gas Sensing Applications,” Journal of Metastable and Nanocrystalline Materials, Vol. 23, 2005, pp. 27-30. doi:10.4028/www.scientific.net/JMNM.23.27
[37] L. Spanhel and M. R. Anderson, “Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Col loids,” Journal of the American Chemical Society, Vol. 113, No. 8, 1991, pp. 2826-2833. doi:10.1021/ja00008a004

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.