Electrical Properties of Cadmium Substitution in Nickel Ferrites

Abstract

Electrical transport properties such as conductivity (σ) and thermo electric power (S) of Cadmium substituted Nickel Ferrites, forming chemical formula Ni1–xCdxFe2O4, where x = 0.0, 0.2, 0.4 have been investigated from room temperature to well beyond the Curie temperature. Plots of log (σT) versus 103/T are linear and show a transition near the Curie temperature. The transition temperature is found to decrease with increase of Cd content. On the basis of Seebeck coefficient (S), the ferrites under investigation have been classified as n-type and p-type semiconductors. The values of charge carrier concentration and mobility have been computed from experimental values of Seebeck coefficient and electrical conductivity. The activation energy in the ferrimagnetic region is in general less than that in the paramagnetic region. An attempt is made to explain the conduction mechanism in these ferrites.

Share and Cite:

A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C. Reddy, K. Rao and M. Prasad, "Electrical Properties of Cadmium Substitution in Nickel Ferrites," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 257-266. doi: 10.4236/wjcmp.2012.24043.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kh. Roumaiah, “The Transport Properties of the Mixed Ni-Cu Ferrite,” Journal of Alloys and Compounds, Vol. 465, 2008, pp. 291-295.
[2] H. N. Oak, K. S. Baek and S. J. Kim, “M?ssbauer Studies of Superexchange Interaction in Tetragonal CuFe2O4,” Solid State Physics, Vol. 208, No. 1, 1998, pp. 249-255. doi:10.1002/(SICI)1521-3951(199807)208:1<249::AID-PSSB249>3.0.CO;2-B
[3] C. B. Kolekar, P. N. Kamble and S. G. Kulkarni, “Effect of Gd3+ Substitution on Dielectric Behaviour of Copper-Cadmium Ferrites,” Journal of Materials Science, Vol. 30, No. 22, 1995, pp. 5784-5788. doi:10.1007/BF00356721
[4] V. R. Kulkarni and A. S. Vainganker, “Abnormal Dielectric Behaviour in the CdxCu1-xFe2O4 System,” Journal of Materials Science, Vol. 22, 1987, pp. 4087-4092. doi:10.1007/BF01133362
[5] N. Rezlescu and E. Rezlescu, “Dielectric Properties of Copper Containing Ferrites,” Physica Status Solidi (A), Vol. 23, No. 2, 1974, pp. 575-582. doi:10.1002/pssa.2210230229
[6] D. Ravinder, K. Vijaya Kumar and B. S. Boyanov, “Elastic Behaviour of Cu-Zn Ferrites,” Materials Letters, Vol. 25, 1999, pp. 22-27.
[7] D. Ravinder and T. Seshagiri Rao, “Electrical Conductivity and Thermoelectric Power of Lithium-Cadmium Ferrites,” Crystal Research and Technology, Vol. 25, No. 8, 1990, pp. 963-969. doi:10.1002/crat.2170250820
[8] V. D. Reddy, M. A. Malik and P. V. Reddy, “Electrical Transport Properties of Manganese-Magnesium Mixed Ferrites,” Materials Science and Engineering: B, Vol. 8, No. 4, 1991, pp. 295-301. doi:10.1016/0921-5107(91)90050-6
[9] D. Ravinder, “Electrical Transport Properties of Cadmium Substituted Copper Ferrites,” Materials Letters, Vol. 43, 2000, pp. 129-138. doi:10.1016/S0167-577X(98)00126-8
[10] A. Globus, H. Pascord and V. Cagan, Physica, Vol. 86-88, 1997, p. 1452.
[11] D. Ravinder and T. Seshagiri Rao, “Electrical Conductivity and Thermoelectric Power of Lithium-Zinc Ferrites,” Crystal Research and Technology, Vol. 25, 1990, pp. 1079-1085. doi:10.1002/crat.2170250820
[12] D. Ravinder, P. K. Raju, “Composition Dependence of the Elastic Moduli of Mixed Lithium—Zinc Ferrites,” Physica Status Solidi (A), Vol. 136, No. 2, 1993, pp. 351-356. doi:10.1002/pssa.2211360208
[13] L. I. Rabinkin and Z. I. Novikova, Ferrites, Minsk, 1960.
[14] A. A. Samokhralov and A. G. Rustmov, Soviet Physics— Solid State, Vol. 7, 1965, p. 961.
[15] L. G. Van Uitert, “High-Resistivity Nickel Ferrites—The Effect of Minor Additions of Manganese or Cobalt,” Journal of Chemical Physics, Vol. 24, No. 2, 1956, pp. 306-310. doi:10.1063/1.1742468
[16] M. I. Klinger, “Two-Phase Polaron Model of Conduction in Magnetite-Like Solids,” Journal of Physics C: Solid State Physics, Vol. 8, No. 21, 1975, p. 3595. doi:10.1088/0022-3719/8/21/029
[17] N. F. Mott and R. W. Gurney, “Electronics Process in Ionic Crystals,” Oxford University Press, Oxford, 1948.
[18] M. I. Klinger, “Electron conduction in magnetite and ferrites,” Physica Status Solidi (B), Vol. 79, No. 1, 1977, pp. 9-48. doi:10.1002/pssb.2220790102
[19] I. Bunget, Rev. Roum. Phys., Vol. 15, 1970, p. 433.
[20] B. Gillot and F. Jemmali, “Dependence of Electrical Pro-Perties in Iron-Cobalt, Iron-Zinc Ferrites near Stoichio-Metry on Firing Temperature and Atmosphere,” Physica Status Solidi (A), Vol. 76, No. 2, 1983, pp. 601-608. doi:10.1002/pssa.2210760223
[21] J. A. Kulkarni, V. Muralidharan, J. K. Srivastava, V. R. Maratha, V. S. Darshane, C. R. K. Murthy and V. Raghavan, “Structural, Magnetic and Transport Properties of the Spinel Ferrites GaxFe1-xNiCrO4,” Journal of Physics C: Solid State Physics, Vol. 18, No. 13, 1985, p. 2593. doi:10.1088/0022-3719/18/13/006
[22] Md. Abdul Malik, V. D. Reddy, P. Venugopal Reddy, D. R. Sagar, Prankishan, “Charge Transport in Germanium- Substituted Magnesium Ferrites,” Modern Physics Letters B, Vol. 8, No. 16, 1994, p. 947. doi:10.1142/S0217984994000959
[23] M. Bhagavantha Reddy, V. N. Moolay, V. Devendar Reddy, P. Venugopal Reddy, “Charge transport in mixed Li Ti ferrites,” Materials Science and Engineering: B, Vol. 14, No. 1, 1992, pp. 63-69. doi:10.1016/0921-5107(92)90330-C
[24] V. N. Moolay, K. Bhupal Reddy, V. Devendar Reddy and P. Venugopal Reddy, “Electrical Transport Properties of Copper Substituted Magnesium Aluminium Ferrites,” Physica Status Solidi (A), Vol. 130, No. 2, 1992, pp. 397-406. doi:10.1002/pssa.2211300217

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.