Two Dimensional Heisenberg Exchange Interaction in the Magnetization Studies of Multiferroic

Abstract

Multiferroics are novel classes of materials that exhibit cross-coupling of mutually excluding phenomena, i.e. magnetism and ferroelectricity. In recent years, the coexistence of ferroelectricity and magnetic orderings has become a hot issue and drawn considerable attentions due to the promising applications to these days technology and the fundamental science involved in these classes of materials. The microscopic origins of magnetism and ferroelectricity differ fundamentally, while the real mechanism of ferroelectricity is still under debate. In the present work, we have started from a simple method Heisengerg hamiltonian and an interaction term resulting from electric field coupling with the magnetic spins with anisotropic limit, demonstrated that magnetization can be manipulated by electric field and anisotropic field in agreement with results experimentally observed. In the multiferroic thin film system the magnetic field tends to play a role in stabilizing the spins in preferred orientations and induces a coupling of magnetism and ferroelectricity that opens a route to switch magnetization with electric polarazation and vice-versa.

Share and Cite:

S. Enyew and P. Singh, "Two Dimensional Heisenberg Exchange Interaction in the Magnetization Studies of Multiferroic," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 215-218. doi: 10.4236/wjcmp.2012.24037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. Kleemann, P. Borisov, S. Bedanta and V. V. Shvartsman, “Multiferroic and Magnetoelectric Materials?novel Developments and Perspectives,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 57, No. 10, 2010, pp. 2228-2232. doi:10.1109/TUFFC.2010.1682
[2] G. A. Smolenskii and V. A. Bokov, “Coexistence of Magnetic and Electric Ordering in Crystals,” Journal of Applied Physics, Vol. 35, No. 3, 1964, pp. 915-918. doi:10.1063/1.1713535
[3] C. N. R. Rao and C. R. Serrao, Journal of Materials Chemistry, Vol. 17, 2007.
[4] D. Khomskii, “Trend: Classifying Multiferroics: Mechanisms and Effects,” Physics, Vol. 2, No. 20, 2009. doi:10.1103/Physics.2.20
[5] H. Schmid, “Some Symmetry Aspects of Ferroics and Single Phase Multiferroics,” Journal of Physics: Condensed Matter, Vol. 20, No. 43, 2008, Article ID: 434201. doi:10.1088/0953-8984/20/43/434201
[6] A. K. Singh, D. Jain, V. Ganesa, A. K. Nigam and S. Patnaik, “Field-Dependent Competing Magnetic Ordering in Multiferroic Ni3V2O8,” EPL, Vol. 86, No. 5, 2009, Article ID: 57001. doi:10.1209/0295-5075/86/57001
[7] N. Sharma, B. J. Kennedy, M. M. Elcombe, Y. Liu and C. D. Ling, “Coexistence of Ferroelectricity and Magnetism in Transition-Metal-Doped n = 3 Aurivillius Phases,” Journal of Physics: Condensed Matter, Vol. 20, No. 2, 2008, Article ID: 025215. doi:10.1088/0953-8984/20/02/025215
[8] J.-I. Igarashi and T. Nagao, “Analysis of Optical Magnetoelectric Effect in GaFeO3,” Physical Review B, Vol. 80, No. 5, 2009, Article ID: 054418. doi:10.1103/PhysRevB.80.054418
[9] J. H. Lee, et al., “A Strong Ferroelectric Ferromagnet Created by Means of Spin-Lattice Coupling,” Nature, Vol. 466, 2010, Article ID: 09331. doi:10.1038/nature09331
[10] A. Pimenov, A. M. Shuvaev, A. A. Mukhin and A. loidl, “Electromagnons in Multiferroic Manganites,” Journal of Physics: Condensed Matter, Vol. 20, No. 43, 2008, Article ID: 434209. doi:10.1088/0953-8984/20/43/434209
[11] A. B. Sushkov, M. Mostovoy, R. Valdes Aguilar, S.-W. Cheong and H. D. Drew, “Electromagnons in Multiferroic RMn2O5 Compounds and Their Microscopic Origin,” Journal of Physics: Condensed Matter, Vol. 20, No. 43, 2008, Article ID: 434210. doi:10.1088/0953-8984/20/43/434210
[12] D. Senff, N. Aliouane, D. N. Argyriou, A. Hiess, L. P. Regnault, P. Link, K. Hradil, Y. Sidis and M. Braden, “Magnetic Excitations in a Cycloidal Magnet: The Magnon Spectrum of Multiferroic TbMnO3,” Journal of Physics: Condensed Matter, Vol. 20, No. 43, 2008, Article ID: 434212. doi:10.1088/0953-8984/20/43/434212
[13] C. L. Jia and J. Berakdar, Physica Status Solidi B, Vol. 247, No. 3, 2010.
[14] H.-B. Chen, Y. Zhou and Y.-Q. Li, Journal of Physics: Condensed Matter, Vol. 23, 2011, Article ID: 066002.
[15] R. Valdes Aguilar, M. Mostovoy, A. B. Sushkov, C. L. Zhang, Y. J. Choi, S.-W. Cheong and H. D. Drew, Physical Review Letters, Vol. 102, 2009, Article ID: 047203.
[16] M. Mochizuki and N. Nagaosa, arxivi:1102.3762V1, 2011.
[17] J. C. Tung and G. Y. Guo, arxivi:1102.3737V1, 2011.
[18] L. You, C.-L. Lu, P. Yang, G. C. Han, T. Wu, U. Luders, W. Pnellier, K. Yao, L. Chen and J. L. Wang, Adv. Matter, Vol. 22, 2010.
[19] C. Kittel, “Quantum Theory of Solids,” 2nd Edition, Wiley, New York, 1987.
[20] P. L. Taylor and O. Heinonen, “A Quantum Approach to Condensed Matter Physics,” Cambridge University Press, Cambridge, 2002.
[21] I. Ortenburger and M. Sparks, Physical Review, Vol. 133, No. 3, 1964.
[22] C. Triguero, M. Porta and A. Planes, “Coupling between Lattice Vibrations and Magnetism in Ising-Like Systems,” Physical Review B, Vol. 73, No. 5, 2006, Article ID: 054401. doi:10.1103/PhysRevB.73.054401
[23] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano and Y. Tokura, “Magnetocapacitance Effect in Multiferroic BiMnO3,” Physical Review B, Vol. 67, No. 18, 2003, Article ID: 180401. doi:10.1103/PhysRevB.67.180401

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.