Ductile Fracture Characterization for Medium Carbon Steel Using Continuum Damage Mechanics

Abstract

This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and developed by Lemaitre. Tensile tests were carried out using loading-unloading cycles in order to capture the gradual deterioration of the elastic modulus, which may be linked to the ductile damage increase with increasing plastic strain. The mechanical parameters for the isotropic damage evolution equation were obtained and then used as inputs for a plasticity-damage coupled nu- merical algorithm, validated through numerical simulations of the experimental tensile tests. A comparison between the SAE 1050 steels studied and two carbon steel alloys (obtained from the literature), provided some basic understanding of the influence of the carbon level on the evolution of the damage parameters. An empiric relationship for this set of parameters, which can provide useful data for preliminary studies envisaging prediction of ductile failure in carbon steels, is also presented.

Share and Cite:

S. Tsiloufas and R. Plaut, "Ductile Fracture Characterization for Medium Carbon Steel Using Continuum Damage Mechanics," Materials Sciences and Applications, Vol. 3 No. 11, 2012, pp. 745-755. doi: 10.4236/msa.2012.311109.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. G. Cockroft and D. J. Latham, “Ductility and the Workability of Metals,” Journal of the Institute of Metals, Vol. 96, 1968, pp. 33-39.
[2] M. Oyane, T. Sato, K. Okimoto and S. Shima, “Criteria for Ductile Fracture and Their Applications,” Journal of Mechanical Working Technology, Vol. 4, 1980, pp. 65-81. doi:10.1016/0378-3804(80)90006-6
[3] A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” Journal of Engineering Materials and Technology, Vol. 99, 1977, pp. 2- 15. doi:10.1115/1.3443401
[4] L. M. Kachanov, “Rupture Time under Creep Conditions,” International Journal of Fracture, Vol. 97, 1999, pp. 11-18.
[5] J. L. Chaboche, “Continuum Damage Mechanics: Present State and Future Trends,” Nuclear Engineering and Design, Vol. 105, 1987, pp. 19-33. doi:10.1016/0029-5493(87)90225-1
[6] J. Lemaitre, “How to Use Damage Mechanics,” Nuclear Engineering and Design, Vol. 80, 1984, pp. 233-245. doi:10.1016/0029-5493(84)90169-9
[7] J. Lemaitre, “A Continuous Damage Mechanics Model for Ductile Fracture,” Journal of Engineering Materials and Technology, Vol. 77, 1985, pp. 335-344.
[8] J. L. Chaboche, “Continuum Damage Mechanics: Part I— General Concepts,” Journal of Applied Mechanics, Vol. 55, 1988, pp. 55-64. doi:10.1115/1.3173661
[9] J. L. Chaboche, “Continuum Damage Mechanics: Part II— Damage Growth, Crack Initiation and Crack Growth,” Journal of Applied Mechanics, Vol. 55, 1988, pp. 65-72. doi:10.1115/1.3173662
[10] J. Lemaitre, “A Course on Damage Mechanics,” 2nd Edition, Springer, Berlin, 1996. doi:10.1007/978-3-642-18255-6
[11] C. L. Chow and J. Wang, “An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture,” Engineering Fracture Mechanics, Vol. 27, 1987, pp. 547- 558. doi:10.1016/0013-7944(87)90108-1
[12] W. Tai and B. Yang, “A New Damage Mechanics Criterion for Ductile Fracture,” Engineering Fracture Mechanics, Vol. 27, 1987, pp. 371-378. doi:10.1016/0013-7944(87)90174-3
[13] T.-J. Wang, “Unified CDM Model and Local Criterion for Ductile Fracture: I—Unified CDM Model for Ductile Fracture,” Engineering Fracture Mechanics, Vol. 42, 1992, pp. 177-183.
[14] T.-J. Wang, “Unified CDM Model and Local Criterion for Ductile Fracture: II—Ductile Fracture Local Criterion Based on the CDM Model,” Engineering Fracture Mechanics, Vol. 42, 1992, pp. 185-193.
[15] S. Chandrakanth and P. Pandey, “An Isotropic Damage Model for Ductile Material,” Engineering Fracture Mechanics, Vol. 50, 1995, pp. 457-465. doi:10.1016/0013-7944(94)00214-3
[16] N. Bonora, “A Nonlinear CDM Model for Ductile Failure,” Engineering Fracture Mechanics, Vol. 58, 1997, pp. 11-28. doi:10.1016/S0013-7944(97)00074-X
[17] L. Storojeva, D. Ponge, R. Kaspar and D. Raabe, “Development of Microstructure and Texture of Medium Carbon Steel during Heavy Warm Deformation,” Acta Materialia, Vol. 52, 2004, pp. 2209-2220. doi:10.1016/j.actamat.2004.01.024
[18] F. A. McClintock, “A Criterion for Ductile Fracture by the Growth of Holes,” Journal of Applied Mechanics, Vol. 35, 1968, pp. 363-371. doi:10.1115/1.3601204
[19] F. Sidoroff, “On the Formulation of Plasticity and Vis- coplasticity with Internal Variables,” Archiwum Mechaniki Stosowanej, 1975, pp. 807-819.
[20] Simulia Abaqus 6.10, “User Subroutines Reference Manual,” 2010.
[21] S. W. Lee and F. Pourboghrat, “Finite Element Simulation of the Punchless Piercing Process with Lemaitre Damage Model,” International Journal of Mechanical Sciences, Vol. 47, 2005, pp. 1756-1768. doi:10.1016/j.ijmecsci.2005.06.009
[22] P. Ludwik, “Elements der Technologischen Mechanik,” 3rd Edition, Vol. 32, Springer, Berlin, 1909.
[23] J. A. Benito, J. M. Manero, J. Jorba and A. Roca, “Change of Young’s Modulus of Cold-Deformed Pure Iron in a Tensile Test,” Metallurgical and Materials Transactions A, Vol. 36A, 2005, pp. 3317-3324.
[24] D. J. Celentano and J.-L. Chaboche, “Experimental and Numerical Characterization of Damage Evolution in Steels,” International Journal of Plasticity, Vol. 23, 2007, pp. 1739-1762. doi:10.1016/j.ijplas.2007.03.008
[25] D. J. Celentano, P. E. Tapia and J. L. Chaboche, “Experimental and Numerical Characterization If Damage Evolution in Steels,” In: G. Buscaglia, E. Dari and O. Zamonsky, Eds., Mecánica Computacional, Vol. XXIII, Bariloche, Argentina, 2004, pp. 45-58.
[26] S. P. Tsiloufas, “Estudo da Fratura Dúctil em Chapas de Médio Carbono Sob a ótica da Teoria da Mecanica do Dano (in Portuguese),” M.Sc. Dissertation, University of S?o Paulo, S?o Paulo, 2012.
[27] J. Gurland, “Observations on the Fracture of Cementite Particles in a Spheroidized 1.05% C Steel Deformed at Room Temperature,” Acta Metallurgica, Vol. 20, 1972, pp. 735-741. doi:10.1016/0001-6160(72)90102-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.