Synthesis and Characterization of Cr Doped ZnO Nanocrystals

Abstract

Samples of chromium doped ZnO were synthesized using co-precipitation technique at room temperature. Structural and optical properties of Cr doped ZnO samples were investigated by X-ray diffraction technique (XRD and UV-Visible spectroscopy (UV-Vis) respectively. X-ray diffraction (XRD) patterns confirm that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions go to the regular Zn sites in the ZnO crystal structure. The lattice constants were calculated using X-ray diffraction data and it is found that lattice parameters decrease with increasing Cr content. The average grain size was calculated using Scherrer’s formula for pure and Cr doped ZnO samples and it is observed that grain size is in the range 11 to17 nm. Band gap of Zn1–xCrxO samples has been evaluated using UV-Vis spectrometer. It is found that the band gap decreases as Cr increases; it is attributed to the s-d and p interactions and the smaller average grain size. It indicates that incorporation of Cr ions into the ZnO matrix. The chemical species of the grown crystals were identified by Fourier transform infrared spectroscopy (FTIR). From FTIR spectra it is observed that IR peaks corresponding to the Zn-O bands. Such results are presented in this paper quantitatively and qualitatively.

Share and Cite:

V. Mote, V. Huse and B. Dole, "Synthesis and Characterization of Cr Doped ZnO Nanocrystals," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 208-211. doi: 10.4236/wjcmp.2012.24035.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Tanaka and Y. Higo, “Large Tunneling Magnetoresistance in GaMnAs/AlAs/GaMnAs Ferromagnetic Semi-conductor Tunnel Junctions,” Physical Review Letters, Vol. 87, No. 2, 2001, pp. 26602-26606. doi:10.1103/PhysRevLett.87.026602
[2] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, “Wide Band Gap Ferromagnetic Semiconductors and Oxides,” Journal of Applied Physics, Vol. 93, No. 1, 2003, pp. 1-13. doi:10.1063/1.1517164
[3] Y. Z. Wang, H. Liu, Z. Q. Li, X. X. Zhang, R. K. Zheng and S. P. Ringer, “Role of Structural Defects on Ferromagnetism in Amorphous Cr-Doped TiO2 Films,” Applied Physics Letters, Vol. 89, No. 4, 2006, pp. 042511-042514. doi:10.1063/1.2240139
[4] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He and S. B. Zhang, “ZnO Light-Emitting Diode Grown by Plasma-Assisted Metal Organic Chemical Vapor Deposition,” Applied Physics Letters, Vol. 88, No. 17, 2006, pp. 173506-173509. doi:10.1063/1.2199588
[5] Z. C. Tu and X. Hu, “Elasticity and Piezoelectricity of Zinc Oxide Crystals, Single Layers, and Possible Single-Walled Nanotubes,” Physical Review B, Vol. 74, No. 3, 2006, pp. 035434-035440. doi:10.1103/PhysRevB.74.035434
[6] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO Thin Film Sensor,” Materials Letters, Vol. 35, No. 1-2, 1998, pp. 33-38. doi:10.1016/S0167-577X(97)00215-2
[7] G. Lawes, A. S. Risbud, A. P. Ramirez and R. Seshadri, “Absence of Ferromagnetism in Co and Mn Substituted Polycrystalline ZnO,” Physical Review B, Vol. 71, No. 4, 2005, pp. 045201-045206. doi:10.1103/PhysRevB.71.045201
[8] A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer and R. Seshadri, “Magnetism in Polycrystalline Cobalt-Substituted Zinc Oxide,” Physical Review B, Vol. 68, No. 20, 2003, pp. 205202-205209. doi:10.1103/PhysRevB.68.205202
[9] C. N. R. Rao and F. L. Deepak, “Absence of Ferromagnetism in Mn- and Co-doped ZnO,” Journal of Materials Chemistry, Vol. 15, No. 5, 2005, pp. 573-578. doi:10.1039/b412993h
[10] S. Thota, T. Dutta and J. Kumar, “On the Sol-Gel Synthesis and Thermal, Structural, and Magnetic Studies of Transition Metal(Ni, Co, Mn) Containing ZnO Powders,” Journal of Physics: Condensed Matter, Vol. 18, No. 8, 2006, pp. 2473-2478. doi:10.1088/0953-8984/18/8/012
[11] K. Ueda, H. Tabata and T. Kawai, “Magnetic and Electric Properties of Transition-Metal-Doped ZnO Films,” Applied Physics Letters, Vol. 79, No. 7, 2001, pp. 988-990. doi:10.1063/1.1384478
[12] B. K. Roberts, A. B. Pakhomov, V. S. Shutthanandan and K. M. Krishnan, “Ferromagnetic Cr-Doped ZnO for Spin Electronics via Magnetron Sputtering,” Journal of Applied Physics, Vol. 97, No. 10, 2005, pp. 10D310-3. doi:10.1063/1.1847914
[13] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa and H. Koinuma, “High through Put Fabrication of Transition-Metal-Doped Epitaxial ZnO Thin Films: A Series of Oxide-Diluted Magnetic Semiconductors and Their Properties,” Applied Physics Letters, Vol. 78, No. 24, 2001, pp. 3824-3826. doi:10.1063/1.1377856
[14] H. J. Lee, S. Y. Jeong, J. Y. Hwang and C. R. Cho, “Ferromagnetism in Li Co-Doped ZnO:Cr,” Europhysics Letters, Vol. 64, No. 6, 2003, pp. 797-802. doi:10.1209/epl/i2003-00628-6
[15] S. Kurian, S. Sebastian, J. Mathew and K. C. George, “Structural and Electrical Properties of Nano-Sized Magnesium Aluminate,” Indian Journal of Pure and Applied Physics, Vol. 42, No. 12, 2004, pp. 926-933.
[16] B. S. Rema Devi, R. Raveendran and A. V. Vaidyan, “Synthesis and Characterization of Mn2+-Doped ZnS Nanoparticles,” Pramana, Vol. 68, No. 4, 2007, pp. 679-687.
[17] S. Maensiri, P. Laokul and V. Promarak, “Synthesis and Optical Properties of Nanocrystalline ZnO Powders by a Simple Method Using Zinc Acetate Dihydrate and Poly (Vinyl Pyrrolidone),” Journal of Crystal Growth, Vol. 289, No. 1, 2006, pp. 102-106. doi:10.1016/j.jcrysgro.2005.10.145
[18] S. Suwanboon “Structural and Optical Properties of Nano- crystalline ZnO Powder from Sol-Gel Method,” Science Asia, Vol. 34, No. 1, 2008, pp. 31-34. doi:10.2306/scienceasia1513-1874.2008.34.031
[19] B. N. Dole, V. D. Mote, V. R. Huse, Y. Purushotham, M. K. Lande, K. M. Jadhav and S. S. Shah, “Structural Studies of Mn Doped ZnO Nanoparticles,” Current Applied Physics, Vol. 11, No. 3, 2011, pp. 762-766. doi:10.1016/j.cap.2010.11.050

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.