Elimination of a disulfide bridge in Aspergillus niger NRRL 3135 Phytase (PhyA) enhances heat tolerance and optimizes its temperature versus activity profile

Abstract

In this study, the optimum temperature was lowered while the residual phytase activity after heating to 70℃ was raised in a widely utilized phytase, Aspergillus niger NRRL 3135 PhyA. This was accomplished by site-directed mutagenesis of the cysteines that are involved in the formation of a single disulfide bridge (DB). When compared to wild type (WT), three of the four mutant phytases displayed a lower optimum temperature, 42℃, and up to a four-fold increase in activity after heating. These findings have a potentially broad application to be incorporated along with other desirable features to engineer a phytase with superior physical and chem-ical attributes for animal feed applications.

Share and Cite:

Mullaney, E. , Sethumadhavan, K. , Boone, S. , Lei, X. and Ullah, A. (2012) Elimination of a disulfide bridge in Aspergillus niger NRRL 3135 Phytase (PhyA) enhances heat tolerance and optimizes its temperature versus activity profile. Advances in Biological Chemistry, 2, 372-378. doi: 10.4236/abc.2012.24046.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mullaney, E., Daly, C.B. and Ullah, A.H.J. (2000) Advances in phytase research. Advances in Applied Microbiology, 47, 157-199. doi:10.1016/S0065-2164(00)47004-8
[2] Wodzinski, R.J. and Ullah, A.H.J. (1996) Phytase. Advances in Applied Microbiology, 42, 263-302. doi:10.1016/S0065-2164(08)70375-7
[3] Berka, R.M., Rey, M.W., Brown, K.M., Byun, T. and Klotz, A.V. (1998) Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology, 64, 4423-4427.
[4] Mitchell, D.B., Vogel, K., Weimann, B., Pasamontes, L. and van Loon, A.P.G.M. (1997) Phytase subfamily of histidine acid phosphatases: Isolation of genes for two novel phytases from fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology, 143, 245-252. doi:10.1099/00221287-143-1-245
[5] Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. and van Loon, A.P.G.M. (1997) Gene cloning, purification and characterization of a heat-stable phytase from the fungus Aspergillus fumigates. Applied and Environmental microbiology, 63, 1996-1700.
[6] Segueilha, L., Lambrechts, C., Boze, H., Moulin, G. and Galzy, P. (1992) Purification and properties of the phytase from Schwanniomyces castelli. Journal of fermentation and Bioengineering, 74, 7-11. doi:10.1016/0922-338X(92)90259-W
[7] Yamada, K., Minoda, Y. and Yamamoto, S. (1968) Phytase from Aspergillus terreus Part I: Production, purification and some general properties of the enzyme. Agricultural and Biological Chemistry, 32, 1275-1282. doi:10.1271/bbb1961.32.1275
[8] Lehman, M. (1988) Consensus phytase. International patent Application, No EP0897985A2.
[9] Zhang, L., Wang, Y., Zhang, C., Wang, Y., Zhu, D., Wang, C. and Nagata, S. (2006) Supplementation effect of Ecotoine on thermostability of phytase. Journal of Biosciences and Bioengineering, 102, 560-563. doi:10.1263/jbb.102.560
[10] Greiner, R. and Konietzny, U. (1996) Conctruction of a bioreactor to produce special breakdown products of phytate. Journal of Biotechnology, 48, 153-159. doi:10.1016/0168-1656(96)01505-2
[11] Han, Y. and Lei, X.G. (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 65, 1915-1918.
[12] Zhang, W., Mullaney, E.J. and Lei, X.G. (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigates phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Applied and Environmental Microbiology, 73, 3069-3076. doi:10.1128/AEM.02970-06
[13] Kim, M.S., Weaver, J.D. and Lei, X.G. (2008) Assembly of mutations for improving thermostability of Escherichia coliAPPA2 phytase. Applied Microbiology and Biotechnology, 79, 751-758. doi:10.1007/s00253-008-1478-2
[14] Jermutus, L., Tessier, M., Pasamontes, L., van Loon, A.P.G.M. and Lehman, M. (2001) Structure-based chimeric enzymes as an alternative to directed enzyme evolution: Phytase a test case. Journal of Biotechnology, 85, 15-24. doi:10.1016/S0168-1656(00)00373-4
[15] Wang, X.Y., Meang, F.G. and Zhou, H.M. (2004) The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochemistry and cell biology, 82, 329-334. doi:10.1139/o03-082
[16] Mullaney, E., Locovare, H., Sethumadhavan, K., Boone, S., Lei, X.G. and Ullah, A.H.J. (2010) Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Applied Microbiology and Biotechnology, 87, 1367-1372. doi:10.1007/s00253-010-2542-2
[17] Cheng, C., Wong, K.B. and Lim, L.B. (2007) The effect of disulfide bond on the conformational stability and catalytic activity of beta-propeller phytase. Protein and Peptide Letters, 14, 175-183. doi:10.2174/092986607779816069
[18] Olczak, M., Morawiecka, B. and Watorek, W. (2003) Plant purple acid phosphatase: Genes, structural and biological function. Acta Biochimica Poland, 50, 1245-1256.
[19] Lei, X., Mullaney, E.J. and Ullah, A.H.J. (2007) Using mutations to improve Aspergillus phytases. US Patent No. 7309505 B2.
[20] Berkman, M., Boyd, D. and Beckwith, J. (2005) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. Journal of Biological Chemistry, 280, 11387-11394.doi:10.1074/jbc.M411774200
[21] Mullaney, E. and Ullah, A.H.J. (2005) Conservation of cysteine residues in fungal Histidine acid phytases. Biochemical and biophysical Research Communications, 328, 404-408.doi:10.1016/j.bbrc.2004.12.181
[22] Kim, T., Mullaney, E.J, Porres, J.M. Roneker, K.R., Crowe, S., Rice, S., Ko, T. Ullah, A.H.J., Daly, C.B., Welch, R. and Lei, X.G. (2006) Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Applied and Environmental Microbiology, 72, 4397-4403. doi:10.1128/AEM.02612-05
[23] Ullah, A.H.J. and Gibson, D.M. (1987) Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: Purification and characterization. Preparative Biochemistr, 17, 63-91. doi:10.1080/00327488708062477
[24] Heinonen, J.K. and Lahti, R.J. (1981) A new convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113, 313-317. doi:10.1016/0003-2697(81)90082-8
[25] Rodriguez, E., Wood, Z.A., Karplus, A. and Lei, X.G. (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Archive for Biochemistry and Biophysics, 382, 105-112. doi:10.1006/abbi.2000.2021.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.