Insect herbivory along environmental gradients

Abstract

There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradients, such as resource, temperature, climatic and biotic gradients. However there is growing evidence in the scientific literature that such generalities are not consistent. This could be due to a number of reasons including the lack of consistency in the way herbivory is assessed such as different methodologies used by researchers, or fundamental differences in leaf damage caused by different types of insect herbivores. Here we assess 61 publications researching insect herbivory along a range of environmental gradients (both biotic and abiotic) and review the methods that researchers have used to collected their data. We found leaf chewing from samples collected in North America dominated the field and most studies assessed herbivory on a single host plant species. Thirty three percent of the studies assessed latitudinal gradients, while 10% assessed altitudinal gradients. Insect herbivory was most commonly expressed as percentage leaf damage using point herbivory. Fewer studies measured a range of different types of herbivory (such as sap sucking, leaf mining, galling, and root feeding) as leaves aged. From our synthesis, we hope that future research into insect herbivory along environmental gradients will take into account herbivory other than just leaf chewing, such as sap sucking, which may cause more damage to plants. Future research should also assess herbivory as a rate, rather than just a single point in time as damage to a young leaf may be more costly to a plant than damage to a mature or senescing leaf. Measurements of plant traits will also assist in comparing herbivory across habitats, plant species, and within species physiological variation. The true impacts that insects have on plants via herbivory along environmental gradients are still poorly understood.

Share and Cite:

Andrew, N. , Roberts, I. and Hill, S. (2012) Insect herbivory along environmental gradients. Open Journal of Ecology, 2, 202-213. doi: 10.4236/oje.2012.24024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Coley, P.D. and Aide, T.M. (1991) Comparison of herbivory and plant defences in temperate and tropical broadleaved forests, in plant-animal interactions: Evolutionary ecology in the tropical and temperate regions. John Wiley & Sons Ltd., Brisbane.
[2] Chown, S.L., Sinclair, B.J., Leinaas, H.P. and Gaston, K.J. (2004) Hemispheric asymmetries in biodiversity—A serious matter for ecology. PLoS Biology, 2, 1701-1707. doi:10.1371/journal.pbio.0020406
[3] Reich, P.B., Walters, M.B. and Ellsworth, D.S. (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. doi:10.2307/2937116
[4] Kikuzawa, K. and Ackerly, D. (1999) Significance of leaf longevity in plants. Plant Species Biology, 14, 39-45. doi:10.1046/j.1442-1984.1999.00005.x
[5] Coley, P.D. (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53, 209-233. doi:10.2307/1942495
[6] Lowman, M.D. (1992) Leaf growth dynamics and herbivory in five species of Australian rain-forest canopy trees. Journal of Ecology, 80, 433-447. doi:10.2307/2260689
[7] Shipley, B., Lechowicz, M.J., Wright, I. and Reich, P.B. (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541. doi:10.1890/05-1051
[8] Williams, C.E. (2007) Deciduous forest. In: Robbins, P., Ed., The Encyclopedia of Environment and Society, SAGE Publications: Thousand Oaks, California, 416-417. doi: 10.4135/9781412953924.n273
[9] Marchin, R., Zeng, H. and Hoffmann, W. (2010) Droughtdeciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia, 163, 845-854. doi:10.1007/s00442-010-1614-4
[10] Hagen, S.B., Folstad, I. and Jakobsen, S.W. (2003) Autumn colouration and herbivore resistance in mountain birch (Betula pubescens). Ecology Letters, 6, 807-811. doi:10.1046/j.1461-0248.2003.00496.x
[11] Primack, R.B. and Marrs, R. (2008) Bias in the review process. Biological Conservation, 141, 2919-2920. doi:10.1016/j.biocon.2008.09.016
[12] Cunningham, S., Pullen, K. and Colloff, M. (2009) Wholetree sap flow is substantially diminished by leaf herb ivory. Oecologia, 158, 633-640. doi:10.1007/s00442-008-1170-3
[13] Samocha, Y. and Sternberg, M. (2010) Herbivory by sucking mirid bugs can reduce nectar production in Aphodelus aestivus Brot. Arthropod-Plant Interactions, 4, 153-158. doi:10.1007/s11829-010-9091-6
[14] Zvereva, E.L., Lanta, V. and Kozlov, M.V. (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: A meta-analysis of experimental studies. Oecologia, 163, 949-960. doi:10.1007/s00442-010-1633-1
[15] Close, D. and Beadle, C. (2003) The ecophysiology of foliar anthocyanin. The Botanical Review, 69, 149-161. doi:10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2
[16] Külheim, C., Yeoh, S.H., Wallis, I.R., Laffan, S., Moran, G.F. and Foley, W.J. (2011) The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytologist, 191, 1041-1053. doi:10.1111/j.1469-8137.2011.03769.x
[17] Maschinski, J. and Whitham, T.G. (1989) The continuum of plant responses to herbivory: The influence of plant association, nutrient availability, and timing. The American Naturalist, 134, 1-19. doi:10.1086/284962
[18] Renwick, J.A.A., Zhang, W., Haribal, M., Attygalle, A.B. and Lopez K.D. (2001) Dual chemical barriers protect a plant against different larval stages of an insect. Journal of Chemical Ecology, 27, 1575-1583. doi:10.1023/A:1010402107427
[19] Moles, A.T., Wallis, I.R., Foley, W.J., Warton, D.I., Stegen, J.C., Bisigato, A.J., Cella-Pizarro, L., Clark, C.J., Cohen, P.S., Cornwell, W.K., Edwards, W., Ejrn?s, R., Gonzales-Ojeda, T., Graae, B.J., Hay, G., Lumbwe, F.C., Maga?a-Rodríguez, B., Moore, B.D., Peri, P.L., Poulsen, J.R., Veldtman, R., Zeipel, H.Von., Andrew, N.R., Boulter, S.L., Borer, E.T., Campón, F.F., Coll, M., Farji-Brener, A.G., De Gabriel, J., Jurado, E., Kyhn, L.A., Low, B., Mulder, C.P.H., Reardon-Smith, K., Rodríguez-Velázquez, J.,
[20] Moles, A.T., Bonser, S.P., Poore, A.G.B., Wallis, I.R. and Foley, W.J. (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Functional Ecology, 25, 380-388. doi:10.1111/j.1365-2435.2010.01814.x
[21] Bairstow, K.A., Clarke, K.L., McGeoch, M.A. and Andrew, N.R. (2010) Leaf miner and plant galler species richness on Acacia: Relative importance of plant traits and climate. Oecologia, 163, 437-448. doi:10.1007/s00442-010-1606-4
[22] Andrew, N.R. and Hughes, L. (2005) Herbivore damage along a latitudinal gradient: Relative impacts of different feeding guilds. Oikos, 108, 176-182. doi:10.1111/j.0030-1299.2005.13457.x
[23] Warton, D.I. and Hui, F.K.C. (2011) The arcsine is asinine: The analysis of proportions in ecology. Ecology, 92, 3-10. doi:10.1890/10-0340.1
[24] Andrew, N.R. and Hughes, L. (2007) Potential host colonization by insect herbivores in a warmer climate: A transplant experiment. Global Change Biology, 13, 1539-1549. doi:10.1111/j.1365-2486.2007.01393.x
[25] Lowman, M.D. (1992) Herbivory in Australian rainforests, with particular reference to the canopies of Doryphora sassafras (Monimiaceae). Biotropica, 24, 263-272. doi:10.2307/2388521
[26] Coley, P.D. and Barone, J.A. (1996) Herbivory and plant defences in tropical forests. Annual Review of Ecology and Systematics, 27, 305-335. doi:10.1146/annurev.ecolsys.27.1.305
[27] Landsberg, J. and Ohmart, C. (1989) Levels of insect defoliation in forests: Patterns and concepts. Trends in Ecology and Evolution, 4, 96-100. doi:10.1016/0169-5347(89)90054-2
[28] Read, J., Gras, E., Sanson, G.D., Clissold, F. and Brunt, C. (2003) Does chemical defence decline more in developing leaves that become strong and tough at maturity. Australian Journal of Botany, 51, 489-496. doi:10.1071/BT03044
[29] Thaler, J.S. (2002) Effect of jasmonate-induced plant responses on the natural enemies of herbivores. Journal of Animal Ecology, 71, 141-150. doi:10.1046/j.0021-8790.2001.00586.x
[30] Louda, S.M. (1982) Distribution ecology: Variation in plant recruitment over a gradient in relation to insect seed predation. Ecological Monographs, 52, 25-41. doi:10.2307/2937343
[31] Louda, S.M. (1983) Seed predation and seedling mortality in the recruitment of a shrub, Haplopappus venetus (Asteraceae), along a climatic gradient. Ecology, 64, 511-521. doi:10.2307/1939971
[32] Lincoln, D.E. and Mooney, H.A. (1984) Herbivory on Diplacus aurantiacus shrubs in sun and shade. Oecologia, 64, 173-176. doi:10.1007/BF00376867
[33] Koptur, S. (1985) Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology, 66, 1639-1650. doi:10.2307/1938026
[34] Collinge, S.K. and Louda, S.M. (1988) Herbivory by leaf miners in response to experimental shading of a native crucifer. Oecologia, 75, 559-566. doi:10.1007/BF00776420
[35] Morrow, P.A. and Fox, L.R. (1989) Estimates of presettlement insect damage in Australian and North American forests. Ecology, 70, 1055-1060. doi:10.2307/1941374
[36] Galen, C. (1990) Limits to the distributions of alpine tundra plants: Herbivores and the alpine skypilot, Polemonium viscosum. Oikos, 59, 355-358. doi:10.2307/3545146
[37] Louda, S.M. and Collinge, S.K. (1992) Plant resistance to insect herbivores: A field test of the environmental stress hypothesis. Ecology, 73, 153-169. doi:10.2307/1938728
[38] Stone, C. and Bacon, P.E. (1994) Relationships among moisture stress, insect herbivory, fliar cineole content and the growth of river red gum Eucalyptus camaldulensis. Journal of Applied Ecology, 31, 604-612. doi:10.2307/2404151
[39] Aizen, M.A. and William, A.P. (1995) Leaf phenology and herbivory along a temperature gradient: A spatial test of the phenological window hypothesis. Journal of Vegetation Science, 6, 543-550. doi:10.2307/3236353
[40] Landsberg, J. and Gillieson, D.S. (1995) Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Australian Journal of Ecology, 20, 299-315. doi:10.1111/j.1442-9993.1995.tb00542.x
[41] Louda, S.M. and Rodman, J.E. (1996) Insect herbivory as a major factor in the shade distribution of a native crucifer (Cardamine cordifolia A. Gray, Bittercress). Journal of Ecology, 84, 229-237. doi:10.2307/2261358
[42] Feller, I.C. and Mathis, W.N. (1997) Primary herbivory by wood-boring insects along an architectural gradient of Rhizophora mangle. Biotropica, 29, 440-451. doi:10.1111/j.1744-7429.1997.tb00038.x
[43] Kelly, C.A. (1998) Effects of variable life history and insect herbivores on reproduction in Solidago macrophylla (Asteraceae) on an elevational gradient. American Midland Naturalist, 139, 243-254. doi:10.1674/0003-0031(1998)139[0243:EOVLHA]2.0.CO;2
[44] Uriarte, M. and Schmitz, O.J. (1998) Trophic control across a natural productivity gradient with sap-feeding herbivores. Oikos, 82, 552-560. doi:10.2307/3546375
[45] Maron, J.L. (1998) Insect herbivory aboveand belowground: Individual and joint effects on plant fitness. Ecology, 79, 1281-1293. doi:10.1890/0012-9658(1998)079[1281:IHAABI]2.0.CO;2
[46] McEvoy, P.B. and Coombs, E.M. (1999) Biological control of plant invaders: regional patterns, field experiments, and structured population models. Ecological Applications, 9, 387-401. doi:10.1890/1051-0761(1999)009[0387:BCOPIR]2.0.CO;2
[47] Alonso, C. (1999) Variation in herbivory by Yponomeuta mahalebella on its only host plant Prunus mahaleb along an elevational gradient. Ecological Entomology, 24, 371-379. doi:10.1046/j.1365-2311.1999.00211.x
[48] Fagan, W.F. and Bishop, J.G. (2000) Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens. The American Naturalist, 155, 238-251. doi:10.1086/303320
[49] Pennings, S.C., Siska, E.L. and M.D. Bertness (2001) Latitudinal differences in plant palatability in atlantic coast salt marshes. Ecology, 82, 1344-1359. doi:10.1890/0012-9658(2001)082[1344:LDIPPI]2.0.CO;2
[50] Rand, T.A. (2002) Variation in insect herbivory across a salt marsh tidal gradient influences plant survival and distribution. Oecologia, 132, 549-558. doi:10.1007/s00442-002-0989-2
[51] Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D. and Whittaker, J.B. (2002) Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16. doi:10.1046/j.1365-2486.2002.00451.x
[52] Freeman, R.S., Alison, K.B. and Neefus, C.D. (2003) Flowering phenology and compensation for herbivory in Ipomopsis aggregata. Oecologia, 136, 394-401. doi:10.1007/s00442-003-1276-6
[53] Hódar, J. and Zamora, R. (2004) Herbivory and climatic warming: A Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation, 13, 493-500. doi:10.1023/B:BIOC.0000009495.95589.a7
[54] Cuevas-Reyes, P., Quesada, M., Siebe, C. and Oyama, K. (2004) Spatial patterns of herbivory by gall-forming insects: A test of the soil fertility hypothesis in a Mexican tropical dry forest. Oikos, 107, 181-189. doi:10.1111/j.0030-1299.2004.13263.x
[55] Gaston, K.J., Genney, D.R., Thurlow, M. and Hartley, S.E. (2004) The geographical range structure of the holly leafminer. IV. Effects of variation in host-plant quality. Journal of Animal Ecology, 73, 911-924. doi:10.1111/j.0021-8790.2004.00866.x
[56] Novotny, V. and Basset, Y. (2005) Host specificity of insect herbivores in tropical forests. Proceedings: Biological Sciences, 272, 1083-1090. doi:10.1098/rspb.2004.3023
[57] Knight, T.M. and Holt, R.D. (2005) Fire generates spatial gradients in herbivory: An example from a Florida sandhill ecosystem. Ecology, 86, 587-593. doi:10.1890/04-1069
[58] Pennings, S.C. and Silliman, B.R. (2005) Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology, 86, 2310-2319. doi:10.1890/04-1022
[59] Fagan, W.F., Lewis, M., Neubert, M.G., Aumann, C., Apple, J.L. and Bishop, J.G. (2005) When can herbivores slow or reverse the spread of an invading plant. A test case from Mount St. Helens. The American Naturalist, 166, 669-685. doi:10.1086/497621
[60] Unsicker, S., Baer, N., Kahmen, A., Wagner, M., Buchmann, N. and Weisser, W. (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia, 150, 233. doi:10.1007/s00442-006-0511-3
[61] Siemann, E., Rogers, W.E. and Dewalt, S.J. (2006) Rapid adaptation of insect herbivores to an invasive plant. Proceedings of the Royal Society B: Biological Sciences, 273, 2763-2769. doi:10.1098/rspb.2006.3644
[62] Maron, J.L. and Crone, E. (2006) Herbivory: Effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B: Biological Sciences, 273, 2575-2584. doi:10.1098/rspb.2006.3587
[63] Pennings, S.C., Zimmer, M., Dias, N., Sprung, M., Dave, N., Ho, C.-K., Kunza, A., McFarlin, C., Mews, M., Pfauder, A. and Salgado, C. (2007) Latitudinal variation in plant-herbivore interactions in European salt marshes. Oikos, 116, 543-549. doi:10.1111/j.2007.0030-1299.15591.x
[64] Pontes R. and Basset, Y. (2007) Gall-forming and freefeeding herbivory along vertical gradients in a low-land tropical rainforest: The importance of leaf sclero-phylly. Ecography, 30, 663-672. doi:10.1111/j.2007.0906-7590.05083.x
[65] Kozlov, M. (2008) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: A climate-driven pattern. Climatic Change, 87, 107-117. doi:10.1007/s10584-007-9348-y
[66] Sinclair, R.J. and Hughes, L. (2008) Incidence of leaf mining in different vegetation types across rainfall, canopy cover and latitudinal gradients. Austral Ecology, 33, 353-360. doi:10.1111/j.1442-9993.2007.01825.x
[67] Wolf, A., Kozlov, M.V. and Callaghan, T.V. (2008) Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Climatic Change, 87, 91-106. doi:10.1007/s10584-007-9340-6
[68] Adams, J.M. and Zhang, Y. (2009) Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. Journal of Ecology, 97, 933-940. doi:10.1111/j.1365-2745.2009.01523.x
[69] Adams, J., Rehill, B., Zhang, Y. and Gower, J. (2009) A test of the latitudinal defense hypothesis: Herbivory, tannins and total phenolics in four North American tree species. Ecological Research, 24, 697-704. doi:10.1007/s11284-008-0541-x
[70] Adams, J., Zhang, Y., Basri, M. and Shukor, N. (2009) Do tropical forest leaves suffer more insect herbivory? A comparison of tropical versus temperate herbivory, estimated from leaf litter. Ecological Research, 24, 1381-1392. doi:10.1007/s11284-009-0623-4
[71] Sobek, S., Scherber, C., Steffan-Dewenter, I. and T. Tscharntke (2009) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia, 160, 279-288. doi:10.1007/s00442-009-1304-2
[72] Miller, T.E.X., Louda, S.M., Rose, K.A. and Eckberg, J.O. (2009) Impacts of insect herbivory on cactus population dynamics: Experimental demography across an environmental gradient. Ecological Monographs, 79, 155-172. doi:10.1890/07-1550.1
[73] Del-Val, E. and Armesto, J.J. (2010) Seedling mortality and herbivory damage in subtropical and temperate populations: Testing the hypothesis of higher herbivore pressure toward the tropics. Biotropica, 42, 174-179. doi:10.1111/j.1744-7429.2009.00554.x
[74] O’Neill, B., Zangerl, A., Dermody, O., Bilgin, D., Casteel, C., Zavala, J., DeLucia, E. and M. Berenbaum (2010) Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus). Journal of Chemical Ecology, 36, 35-45. doi:10.1007/s10886-009-9727-0
[75] Schuldt, A., Baruffol, M., B?hnke, M., Bruelheide, H., H?rdtle, W., Lang, A.C., Nadrowski, K., Oheimb, G. Von, Voigt, W., Zhou, H. and Assmann T. (2010) Tree diversity promotes insect herbivory in subtropical forests of southeast China. Journal of Ecology, 98, 917-926. doi:10.1111/j.1365-2745.2010.01659.x
[76] Ballhorn, D.J., Schmitt, I., Fankhauser, J.D., Katagiri, F. and Pfanz, H. (2011) CO2-mediated changes of plant traits and their effects on herbivores are determined by leaf age. Ecological Entomology, 36, 1-13. doi:10.1111/j.1365-2311.2010.01240.x
[77] Zhang, Y., Adams, J. and Zhao, D. (2011) Does insect folivory vary with latitude among temperate deciduous forests. Ecological Research, 26, 377-383. doi:10.1007/s11284-010-0792-1
[78] Bj?rkman, C., Berggren, ?. and Bylund, H. (2011) Causes behind insect folivory patterns in latitudinal gradients. Journal of Ecology, 99, 367-369.
[79] Cornelissen, T. and Stiling, P. (2011) Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthropod-Plant Interactions, 5, 59-69. doi:10.1007/s11829-010-9116-1
[80] Garibaldi, L., Kitzberger, T. and Chaneton, E. (2011) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia, 167, 117-129. doi:10.1007/s00442-011-1978-0
[81] Garibaldi, L.A., Kitzberger, T. and Ruggiero, A. (2011) Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits. Global Ecology and Biogeography, 20, 609-619. doi:10.1111/j.1466-8238.2010.00623.x
[82] Blue, J., Souza, L., Classen, A., Schweitzer, J. and Sanders, N. (2011) The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem. Oecologia, 167, 771-780. doi:10.1007/s00442-011-2028-7
[83] Silva, J., Espírito-Santo, M. and Melo, G. (2012) Herbivory on Handroanthus ochraceus (Bignoniaceae) along a successional gradient in a tropical dry forest. Arthropod-Plant Interactions, 6, 45-57. doi:10.1007/s11829-011-9160-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.