Insights on the structural characteristics of NDM-1: The journey so far

Abstract

New Delhi metallo-β-lactamase (NDM-1) has created a medical storm ever since it was first reported; as it is active on virtually all clinically used β-lactam antibiotics. NDM-1 rampancy worldwide is now considered a nightmare scenario, particularly due to its rapid dissemination. An underlying theme in the majority of recent studies is structural characterization as knowledge of the three-dimensional structure of NDM-1 shall help find connections between its structure and function. Moreover, structural details are even critical in order to reveal the resistance mecha- nism to β-lactam antibiotics. In this perspective, we review structural characteristics of NDM-1 that have been delineated since its first report. We anticipate that these structure-function connections made by its characterization shall further serve as future guidelines for elucidating pathways towards de novo design of functional inhibitors.

Share and Cite:

Saini, A. and Bansal, R. (2012) Insights on the structural characteristics of NDM-1: The journey so far. Advances in Biological Chemistry, 2, 323-334. doi: 10.4236/abc.2012.24040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Levy, S.B. and Marshall, B. (2004) Antibiotic resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, S122-S129. doi:10.1038/nm1145
[2] Yong, D., Toleman, M.A., Giske, C.G., Cho, S., Hyun, S., Sundman, K., Lee, K. and Walsh, T.R. (2009) Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumonia sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 53, 5046-5054. doi:10.1128/AAC.00774-09
[3] Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., Krishnan, P., Kumar, A.V., Maharajan, S., Mushtaq, S., Noorie, T., Paterson, D.L., Pearson, A., Perry, C., Pike, R., Rao, B., Ray, U., Sarma, J.B., Sharma, M., Sheridan, E., Thirunarayan, M.A., Turton, J., Upadhay, S., Warner, M., Welfare, W., Livermore, D.M. and Woodford, N. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A mole
[4] Rolain, J.M., Parola, P. and Cornaglia, G. (2010) New Delhi metallo-beta-lactamase (NDM-1): Towards a new pandemia? Clinical Microbiology and Infection, 12, 1699- 1701. doi:10.1111/j.1469-0691.2010.03385.x
[5] Bush, K. (2010) Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Current Opinion in Microbiology, 13, 558-564. doi:10.1016/j.mib.2010.09.006
[6] Huo, T.I. (2010) The first case of multidrug-resistant NDM-1 harboring Enterobacteriaceae in Taiwan: Here comes the superbacteria! Journal of the Chinese Medical Association, 73, 557-558. doi:10.1016/S1726-4901(10)70121-0
[7] Moellering Jr., R.C. (2010) NDM-1-A cause for world-wide concern. The New England Journal of Medicine, 363, 2377-2379. doi:10.1056/NEJMp1011715
[8] Poirei, L., Lagrutta, E., Taylor, P., Pham, J. and Nord- mann, P. (2010) Emergence of metallo-β-lactamase NDM-1 producing multidrug resistant Escherichia coli in Australia. Antimicrobial Agents and Chemotherapy, 54, 4914-4916. doi:10.1128/AAC.00878-10
[9] Poirel, L., Al Maskari, Z., Al Rashdi, F., Bernabeu, S. and Nordmann, P. (2011) NDM-1 producing Klebsiella pneumonia isolated in the Sultanate of Oman. The Jour- nal of Antimicrobial Chemotherapy, 66, 304-306. doi:10.1093/jac/dkq428
[10] Poirel, L., Revathi, G., Bernabeau, S. and Nordamnn, P. (2011) Detection of NDM-1 producing Kleibsiella pneu-monia in Kenya. Antimicrobial Agents and Chemotherapy, 55, 934-936. doi:10.1128/AAC.01247-10
[11] Poirel, L., Ros, A., Crricajo, A., Berthelot, P., Pozzetto, B., Bernabeu, S. and Nordmann, P. (2011) Extremely drug-resistant Citrobacter freundii identified in a patient returning from India and producing NDM-1 and other carbapenemases. Antimicrobial Agents and Chemotherapy, 55, 447-448. doi:10.1128/AAC.01305-10
[12] Samuelsen, O., Thilesen, C.M., Heggelund, L., Vada, A.N., Kummel, A. and Sundsfjord, A. (2011) Identifica- tion of NDM-1 producing Enterobacteriaceae in Norway. The Journal of Antimicrobial Chemotherapy, 66, 670- 672. doi:10.1093/jac/dkq483
[13] Walsh, T.R. (2010) Emerging carbapenemases: A global perspective. International Journal of Antimicrobal Agents, 36, S8-S14. doi:10.1016/S0924-8579(10)70004-2
[14] Zhang, X. (2010) Human in check: New threat from superbugs equipped with NDM-1. Protein Cell, 1, 1051- 1052. doi:10.1007/s13238-010-0134-7
[15] Zheng, B., Tan, S., Gao, J., Han, H., Liu, J., Lu, G., Liu, D., Yi, Y., Zhu, B. and Gao, G.F. (2011) An unexpected similarity between antibiotic-resistant NDM-1 and beta- lactamase II from Erythrobacter litoralis. Protein Cell, 2, 250-258. doi:10.1007/s13238-011-1027-0
[16] Llarrull, L.I., Testero, S.A., Fisher, J.F. and Mobashery, S. (2010) The future of β-lactams. Current Opinion in Mi- crobiology, 13, 551-557. doi:10.1016/j.mib.2010.09.008
[17] Draw, S.M. and Bonomo, R.A. (2010) Three decades of beta-lactamase inhibitors. Clinical Microbiology Reviews, 23, 160-201. doi:10.1128/CMR.00037-09
[18] Wilke, M.S., Lovering, A.L. and Strynadka, N.C. (2005) Beta-lactam antibiotic resistance: A current structural perspective. Current Opinion in Microbiology, 8, 525- 533. doi:10.1016/j.mib.2005.08.016
[19] Bebrone, C. (2007) Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochemical Pharmacology, 74, 1686-1701. doi:10.1016/j.bcp.2007.05.021
[20] Nair, D. and Rawat, D. (2010) Extended-spectrum β- lactamases in Gram Negative Bacteria. Journal of Global Infectious Diseases, 2, 263-274. doi:10.4103/0974-777X.68531
[21] Wang, J.-F. and Chou, K.C. (2011) Insights from modeling the 3D structure of New Delhi metallo-β-lactamase and its binding interactions with antibiotic drugs. PLoS ONE, 6, e18414. doi:10.1371/journal.pone.0018414
[22] Matagne, A., Lamotte-Brasseur, J. and Frere, J.M. (1998) Catalytic properties of class A-lactamases: Efficiency and diversity. The Biochemical Journal, 330, 581-598.
[23] Abraham, E.P. and Chain, E. (1940) An enzyme from bacteria able to destroy penicillin. Nature, 146, 837-837. doi:10.1038/146837a0
[24] Turner, P.J. (2005) Extended-spectrum-lactamases. Clinical Infectious Diseases, 41, S273-S275. doi:10.1086/430789
[25] Ambler, R.P. (1980) The structure of beta-lactamases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 289, 321-331. doi:10.1098/rstb.1980.0049
[26] Gupta, V. (2007) An update on newer-lactamases. Indian Journal of Medical Research, 126, 417-427.
[27] Dhillon, R. and Clark, J. (2011) ESBLs: A clear and present danger? Critical Care Research and Practice, 2012, 625170-625181.
[28] Kanj, S.S. and Kanafani, Z.A. (2011) Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clinic Proceedings, 86, 250-259. doi:10.4065/mcp.2010.0674
[29] Ambler, R.P., Coulson, A.F., Frere, J.M., Ghuysen, J.M., Joris, B., Forsman, M., Levesque, R.C., Tiraby, G. and Waley, S.G. (1991) A standard numbering scheme for the class A beta lactamases. The Biochemical Journal, 276, 269-270.
[30] Bush, K., Jacoby, G.A. and Medeiros, A.A. (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39, 1211-1233. doi:10.1128/AAC.39.6.1211
[31] Rasmussen, B.A. and Bush, K. (1997) Carbapenem-hy- drolyzing betalactamases. Antimicrobial Agents and Chemotherapy, 41, 223-232.
[32] Zhang, H.M. and Hao, Q. (2011) Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. The FASEB Journal, 25, 2574-2582. doi:10.1096/fj.11-184036
[33] Lee, K., Yum, J.H., Yong, D., Lee, H.M., Kim, H.D., Docquier, J.D., Rossolini, G.M. and Chong, Y. (2005) Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrobial Agents and Chemotherapy, 49, 4485-4491. doi:10.1128/AAC.49.11.4485-4491.2005
[34] Neuwald, A.F., Liu, J.S., Lipman, D.J. and Lawrence, C.E. (1997) Extracting protein alignment models from the sequence database. Nucleic Acids Research, 25, 1665- 1677. doi:10.1093/nar/25.9.1665
[35] Daiyasu, H., Osaka, K., Ishino, Y. and Toh, H. (2001) Expansion of the zinc metallohydrolase family of the beta-lactamase fold. FEBS Letters, 503, 1-6. doi:10.1016/S0014-5793(01)02686-2
[36] Aravind, L. (1999) An evolutionary classification of the metallo-β-lactamase fold proteins. Silico Biology, 1, 69- 91.
[37] Costello, A.L., Sharma, N.P., Yang, K.W., Crowder, M.W. and Tierney, D.L. (2006) X-ray absorption spectroscopy of the zinc binding sites in the class B2 met- allo-β-lactamase ImiS from Aeromonas veronii bv. sobria. Biochemistry, 5, 13650-13658. doi:10.1021/bi061547e
[38] Li, Y., Chooi, Y.H., Sheng, Y., Valentine, J.S. and Tang, Y. (2011) Comparative characterization of fungal an- thraxcenone and naphthacenedione biosynthetic pathways reveals an α-hydroxylation-dependent claisen-like cycli- zation catalyzed by a dimanganese thioesterase. Journal of the American Chemical Society, 133, 15773-15785. doi:10.1021/ja206906d
[39] Llarrull, L.I., Tioni, M.F., Kowalski, J., Bennett, B. and Vila, A.J. (2007) Evidence for a dinuclear active site in the metallo-β-lactamase BcII with substoichiometric Co (II). A new model for metal uptake. The Journal of Biological Chemistry, 282, 30586-30595. doi:10.1074/jbc.M704613200
[40] Gomes, C.M., Giuffre, A., Forte, E., Vicente, J.B., Saraiva, L.M., Brunori, M. and Teixeira, M. (2002) A novel type of nitricoxide reductase. Escherichia coli flavorubredoxin. The Journal of Biological Chemistry, 277, 25273-25276. doi:10.1074/jbc.M203886200
[41] Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frere, J.M. and Dideberg, O. (1995) The 3-D structure of a zinc metallo-β-lactamas from Bacillus cereus reveals a new type of protein fold. The EMBO Journal, 14, 4914-4921.
[42] Kim, Y., Tesar, C., Mire, J., Jedrzejczak, R.., Binkowski, A., Babnigg, G., Saccgettini, J. and Joachimiak A. (2011) Structure of apo- and mono-metalated forms of NDM-1: A highly potent carbanepem-hydrolyzing metallo-β-lac- tamase. PLoS ONE, 6, e24621. doi:10.1371/journal.pone.0024621
[43] Peirano, G., Schreckenberger, P.C. and Pitout, J.D.D. (2011) Characteristics of NDM-1 producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrobial Agents and Chemotherapy, 55, 2986-2988. doi:10.1128/AAC.01763-10
[44] King, D. and Strynadka, N. (2011) Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Science, 20, 1484-1491. doi:10.1002/pro.697
[45] King, D.T., Worrall, L.J., Gruninger, R. and Strynadka, N. (2012) New Delhi metallo-β-lactamase: Structural in- sights into β-lactam recognition and inhibition. Journal of the American Chemical Society, 134, 11362-11365. doi:10.1021/ja303579d
[46] Green, V.L., Verma, A., Owens, R.J., Phillips, S.E. and Carr, S.B. (2011) Structure of New Delhi metallo-β-lac- tamase 1 (NDM-1). Acta Crystallogr, 67, 1160.
[47] Guo, Y., Wang, J., Niu, G., Shui, W., Sun, Y., Zhou, H., Zhang, Y., Yang, C., Lou, Z. and Rao, Z. (2011) A struc- tural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell, 2, 384-394. doi:10.1007/s13238-011-1055-9
[48] Thomas, P.W., Zheng, M., Wu, S., Guo, H., Liu, D., Xu, D. and Fast, W. (2011) Characterization of purified New Delhi metallo-β-lactamase-1. Biochemistry, 50, 10102- 10113. doi:10.1021/bi201449r
[49] Toleman, M.A., Bennett, P.M. and Walsh, T.R. (2006) Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class I integrons. The Journal of Antimicrobial Chemotherapy, 58, 1-6. doi:10.1093/jac/dkl204
[50] Toleman, M.A., Bennett, P.M. and Walsh, T.R. (2006) ISCR elements: Novel gene-capturing systems of the 21st century? Microbiology and Molecular Biology Review, 70, 296-316. doi:10.1128/MMBR.00048-05
[51] Heinz, U. and Adolph, H.W. (2004) Metallo-β-lactamases: Two binding sites for one catalytic metal ion? Cellular and Molecular Life Sciences, 61, 2827-2839. doi:10.1007/s00018-004-4214-9
[52] Orellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A. and Vila, A.J. (1998) Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry, 37, 10173-10180. doi:10.1021/bi980309j
[53] Liang, Z., Li, L., Wang, Y., Chen, L., Kong, X., Hong, Y., Lan, L., Zheng, M., Yang, C.G., Hong, S.X., Luo, C., Li, K.K., Chen, K. and Jiang, H. (2011) Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One, 6, e23606. doi:10.1371/journal.pone.0023606
[54] Randhawa, V. and Jamwal, R. (2011) Molecular modelling and virtual screening studies of NDM-1 Beta-lac- tamase for identification of a series of potent inhibitors. International Research Journal of Biochemistry and Bioinformatics, 1, 95-102.
[55] Chou, K.C. and Zhang, C.T. (1995) Review: Prediction of protein structural classes. Critical Reviews in Bio- chemistry and Molecular Biology, 30, 275-349. doi:10.3109/10409239509083488
[56] Moali, C., Anne, C., Lamotte-Brasseur, J., Groslambert, S., Devreese, B., Van Beeumen, J., Galleni, M. and Frère, J.M. (2003) Analysis of the importance of the metallo- beta-lactamase active site loop in substrate binding and catalysis. Chemistry and Biology, 10, 319-329. doi:10.1016/S1074-5521(03)00070-X
[57] Yamaguchi, Y., Jin, W., Matsunaga, K., Ikemizu, S., Yamagata, Y., Wachino, J., Shibata, N., Arakawa, Y. and Kurosaki, H. (2007) Crystallographic investigation of the inhibition mode of a VIM-2 metallo-betalactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. Journal of Medicinal Chemistry, 50, 6647-6653. doi:10.1021/jm701031n
[58] Sowmiya, M., Umashankar, V., Muthukumaran, S., Mad- havan, H.N. and Malathi, J. (2012) Studies on New Delhi metallo-beta-lactamse-1 producing Acinetobacter bauma- nnii isolated from donor swab in a tertiary eye care centre, India and structural analysis of its antibiotic binding interactions. Bioinformation, 8, 445-452. doi:10.6026/97320630008445
[59] Gagupati, J., Mukkavali, S.V., Atiamula, S. and Siva Sai, K.S.R. (2011) In-silico modelling and docking studies of New Delhi beta-lactamase-1 (Superbug). International Journal of Engineering Science and Technology, 3, 2427- 2534.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.