Effect of Magnesium on the Mechanical and Bioactive Properties of Biphasic Calcium Phosphate

Abstract

Incorporation of trace elements into calcium phosphate structure is of great interest for the development of artificial bone implants. Biphasic calcium phosphate (BCP) composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have been synthesized in the presence of magnesium (5 M% - 20 M%) by gel method under physiological conditions. Crystallization of Mg-BCP in the gel medium mimics the Mg intake in the human body. Powder X-ray dif- fraction and Fourier transform infrared analyses confirmed that the Mg doping leads to the enrichment of β-TCP phase and suppresses the HA content in BCP. Nanoindentation studies indicate a significant decrease in hardness and elastic modulus values of BCP due to Mg doping. In vitro bioactivity study has confirmed the formation of apatite layer on the Mg doped samples making it suitable for bone replacement. The results suggest that the optimum Mg doping promotes the bioactivity which is perquisite for biomedical applications.

Share and Cite:

P. Kanchana and C. Sekar, "Effect of Magnesium on the Mechanical and Bioactive Properties of Biphasic Calcium Phosphate," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 10, 2012, pp. 982-988. doi: 10.4236/jmmce.2012.1110099.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Gomes, G. Renaudin, E. Jallot and J. M. Nedelec, “Structural Characterization and Biological Fluid Interaction of Sol-Gel-Derived Mg-Substituted Biphasic Calcium Phosphate,” Applied Materials and Interfaces, Vol. 1, No. 2, 2009, pp. 505-513. doi:10.1021/am800162a
[2] S. Mondal, B. Mondal, A. Dey and S. S. Mukhopadhyay, “Studies on Processing and Characterization of Hy- droxyapatite Biomaterials from Different Bio Wastes,” Journal of Minerals & Materials Characterization & En- gineering, Vol. 11, No. 1, 2012, pp. 55-67.
[3] D. Luna-Zaragoza, E. T. Romero-Guzmán and L. R. Reyes-Gutiérrez, “Surface and Physicochemical Charac- terization of Phosphates Vivianite, Fe2(PO4)3 and Hy- droxyapatite, Ca5(PO4)3OH,” Journal of Minerals & Ma- terials Characterization & Engineering, Vol. 8, No. 8, 2009, pp. 591-609.
[4] R. W. N. Nilen and P. W. Richter, “The Thermal Stability of Hydroxyapatite in Biophasic Calcium Phosphate Ce- ramics,” Journal of Minerals & Materials Characteriza- tion & Engineering, Vol. 19, No. 4, 2008, pp. 1693-1702. doi:10.1007/s10856-007-3252-x
[5] F. Ren, Y. Leng, R. Xin and X. Ge, “Synthesis, Charac- terization and Ab Initio Simulation of Magnesium-Sub- stituted Hydroxyapatite,” Acta Biomater, Vol. 6, No 7, 2010, pp. 2787-2796. doi:10.1016/j.actbio.2009.12.044
[6] I. Cacciotti, A. Bianco, M. Lombardi and L. Montanaro, “Mg-Substituted Hydroxyapatite Nanopowders: Synthesis, Thermal Stability and Sintering Behavior,” Journal of the European Ceramic Society, Vol. 29, No. 14, 2009, pp. 2969-2978. doi:10.1016/j.jeurceramsoc.2009.04.038
[7] H. S. Ryu, K. S. Hong, J. K. Lee, D. J. Kim, J. H. Lee, B. S. Chang, D. H. Lee, C. K. Lee and S. S. Chung, “Mag- nesia-Doped HA/β-TCP and Evaluation of Their Bio- compatibility,” Biomaterials, Vol. 25, No. 3, 2004, pp. 393-401. doi:10.1016/S0142-9612(03)00538-6
[8] S. Kannan and J. M. F. Ferreira, “Synthesis and Thermal Stability of Hydroxyapatite-β-Tricalcium Phosphate Com- posites with Cosubstituted Sodium, Magnesium, and Fluorine,” Chemistry of Materials, Vol. 18, No. 1, 2006, pp. 198-203. doi:10.1021/cm051966i
[9] S. R. Kim, J. H. Lee, Y. T. Kim, D. H. Riu, S. J. Jung, Y. J. Lee, S. C. Chung and Y. H. Kim, “Synthesis of Si, Mg Substituted Hydroxyapatites and Their Sintering Behav- iors,” Biomaterials, Vol. 24, No. 8, 2003, pp. 1389-1398. doi:10.1016/S0142-9612(02)00523-9
[10] P. Kanchana and C. Sekar, “Influence of Strontium on the Synthesis and Surface Properties of Biphasic Calcium Phosphate (BCP) Bioceramics,” Journal of Applied Bio- materials and Biomechanics, Vol. 8, No. 3, 2010, pp. 153-158.
[11] P. Kanchana and C. Sekar, “Influence of Sodium Fluoride on the Synthesis of Hydroxyapatite by Gel Method,” Journal of Crystal Growth, Vol. 312, No. 6, 2010, pp. 808-816. doi:10.1016/j.jcrysgro.2009.12.032
[12] C. K. Chauhan, M. J. Joshi and A. D. B. Vaidya, “Growth Inhibition of Struvite Crystals in the Presence of Herbal Extract Boerhaavia Diffusa Linn,” American Journal of Infectious Diseases, Vol. 5, No. 3, 2009, pp. 170-179. doi:10.3844/ajidsp.2009.170.179
[13] T. Kokubo, H. Takadama, “How Useful is SBF in Pre- dicting in Vivo Bone Bioactivity?” Biomaterials, Vol. 27, No. 15, 2006, pp. 2907-2915. doi:10.1016/j.biomaterials.2006.01.017
[14] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experi- ments,” Journal of Materials Research, Vol. 7, No. 6, 1992, pp. 1564-1583. doi:10.1557/JMR.1992.1564
[15] J. F. Ferguson and P. L. McCarty, “Effects of Carbonate and Magnesium on Calcium Phosphate Precipitation,” Environmental Science and Technology, Vol. 5, No. 6, 1971, pp. 534-540. doi:10.1021/es60053a005
[16] S. Veintemillas-Verdaguer, “Chemical Aspects of the Effects of Impurities in Crystal Growth,” Progress in crystal growth and characterization of materials, Vol. 32, No. 1-2, 1996, pp. 75-109. doi:10.1016/0960-8974(96)00005-8
[17] E. Boanini, M.Gazzano and A. Bigi, “Ionic Substitutions in Calcium Phosphates Synthesized at Low Tempera- ture,” Acta Biomaterialia, Vol. 6, No. 6, 2010, pp. 1882- 1894. doi:10.1016/j.actbio.2009.12.041
[18] A. Bigi, M. Gazzano, A. Ripamonti and N. Roveri, “Ef- fect of Foreign Ions on the Conversion of Brushite and Octacalcium Phosphate into Hydroxyapatite,” Journal of inorganic biochemistry, Vol. 32, No. 4, 1988, pp. 251-257. doi:10.1016/0162-0134(88)85004-9
[19] M. H. Salami, J. C. Heughebaert and G. H. Nancollas, “Crystal Growth of Calcium Phosphates in the Presence of Magnesium Ions.” Langmuir, Vol. 1, No. 1, 1985, pp. 119-122. doi:10.1021/la00061a019
[20] E. C. Victoria and F. D. Gnanam, “Synthesis and Characterization of Biphasic Calcium Phosphate,” Trends in Biomaterials & Artificial Organs, Vol. 16, No. 1, 2002, pp. 12-14.
[21] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas and K. S. Ten Huisen, “Mechanochemical-Hydro- thermal Synthesis of Calcium Phosphate Powders with Coupled Magnesium and Carbonate Substitution,” Jour- nal of solid state chemistry, Vol. 177, No. 3, 2004, pp. 793-799. doi:10.1016/j.jssc.2003.09.012
[22] P. N. Kumta, C. Sfeir, D. H. Lee, D. Olton and D. Choi, “Nanostructured Calcium Phosphates for Biomedical Ap- plications: Novel Synthesis and Characterization,” Acta Biomaterialia, Vol.1, No. 1, 2005,pp. 65-83. doi:10.1016/j.actbio.2004.09.008
[23] I. Sopyan and A. N. Natasha, “Preparation of Nanostructured Manganese-Doped Biphasic Calcium Phosphate Powders via Sol-Gel Method,” Ionics, Vol. 15, No. 62009, pp. 735-741. doi:10.1007/s11581-009-0330-8
[24] I. Manjubala and M. Sivakumar, “In-Situ Synthesis of Biphasic Calcium Phosphate Using Microwave Irradia- tion,” Materials Chemistry and Physics, Vol. 71, No. 3, 2001, pp. 272-278. doi:10.1016/S0254-0584(01)00293-0
[25] J. Pena and M. Vallet-Regi, “Hydroxyapatite, Tricalcium Phosphate and Biphasic Materials Prepared by a Liquid Mix Technique,” Journal of the European Ceramic Soci- ety, Vol. 23, No. 10, 2003, pp. 1687-1696. doi:10.1016/S0955-2219(02)00369-2
[26] K. P. Sanosh, M. C. Chu, A. Balakrishnan, T. N. Kim, S. J. Cho, “Sol-Gel Synthesis of Pure Nano Sized β-Tricalcium Phosphate Crystalline Powders,” Current Applied Physics, Vol. 10, No. 1, 2010, pp. 68-71. doi:10.1016/j.cap.2009.04.014
[27] B. Viswanath, R. Raghavan, U. Ramamurthy and N. Rav- ishankar, “Mechanical Properties and Anisotropy in Hy- droxyapatite Single Crystal,” Scripta Materialia, Vol. 57, No. 4, pp. 361-364. doi:10.1016/j.scriptamat.2007.04.027

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.