Bounding Surface Approach to the Modeling of Anisotropic Fatigue Damage in Woven Fabric Composites

Abstract

A general approach for the modeling of fatigue induced damage in woven fabric composites and under multi-axial stress state is outlined in this paper. Guided by isotropic hardening/softening theories of plasticity and damage mechanics, a generalized bounding surface approach is presented. It is argued that the limit surface is only a special case in such a formulation when the fatigue cycle is set to one and that under fatigue environment the limit surface contracts to a failure (residual strength) state based on the number of cycle, stress path, and stress magnitude. Within the formulation, specific kinetic relations for microcrack growth are postulated for woven fabric composites and a new direction function is specified to capture strength anisotropy of the material. Anisotropic stiffness degradations and inelastic strain propagation due to damage processes are also obtained utilizing damage mechanics formulation. The paper concludes with comparing theoretical predictions against experimental records showing a good agreement.

Share and Cite:

C. Wen, S. Yazdani, Y. Kim and M. Abdulrahman, "Bounding Surface Approach to the Modeling of Anisotropic Fatigue Damage in Woven Fabric Composites," Open Journal of Composite Materials, Vol. 2 No. 4, 2012, pp. 125-132. doi: 10.4236/ojcm.2012.24015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. W. Smith and K. J. Pascoe, “Biaxial Fatigue of a Glass-Fiber Reinforced Composite. I. Fatigue and Fracture Behavior,” Mechanical Engineering Publications, Biaxial and Multiaxial Fatigue, 1989, pp. 367-396.
[2] A. J. Russell, “Assessing the Long Term Durability of Glass Fibre Composites,” Seventh International Conference on Marine Application of Composite Materials, 1998, pp. R1-R13.
[3] Z. Khan and etc. “Fatigue Damage Characterization in Plain Weave Carbon-Carbon Fabric Reinforced Plastic Composites,” Journal of Reinforced Plastics and Composite, Vol. 17, No. 15, 1998, pp. 1320-1337.
[4] W. W. Stinchcomb and K. L. Reifsnider, “Fatigue Damage Mechanisms in Composite Materials: A Review,” Fatigue Mechanisms, 1979, pp. 762-787.
[5] H. A. Whitworth, “A Stiffness Degradation Model for Composite Laminates under Fatigue Loading,” Composite Structures, Vol. 40, No. 2, 1998, pp. 95-101. doi:10.1016/S0263-8223(97)00142-6
[6] E. W. Smith and K. J. Pascoe, “Biaxial Fatigue of a Glass-Fiber Reinforced Composite, II. Failure Criteria for Fatigue and Fracture,” Mechanical Engineering Publications, Biaxial and Multiaxial Fatigue, 1989, pp. 397-421.
[7] U. Hansen, “Damage Development in Woven Fabric Composites during Tension-Tension Fatigue,” Journal of Composite Materials, Vol. 33, 1999, pp. 614-639. doi:10.1177/002199839903300702
[8] V. Natarajan; H. V. S. Gangarao and V. Shekar, “Fatigue Response of Fabric-reinforced Polymeric Composites”, Journal Of Composite Materials, vol. 39, no. 17, 2005, pp. 1541-1559. doi:10.1177/0021998305051084
[9] L. J. Boutman and S. Sahu, “Mechanical properties of particulate composites”, Polymer Engineering and Science, Vol. 12, 1972, pp. 91-100. doi:10.1002/pen.760120204
[10] M. J. Owen, “Fatigue processes in fibre reinforced plastics”, Philosophical Transactions, Series A, vol. 294, no. 1411, 1980, pp. 535-543. doi:10.1098/rsta.1980.0062
[11] M. J. Owen, “Fatigue testing of fiber reinforced plastics”, COMPOSITES, Vol. 1, 1970, pp. 346-355. doi:10.1016/0010-4361(70)90233-8
[12] J. Mandell, D. Cairns, D. Samborsky, R. Morehead and D. Haugen, “Prediction of delamination in wind turbine blade structural details”, 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV; UNITED STATES, 2003, pp. 202-213.
[13] J. F. Mandell,D. H. Grande, T. H. Tsiang and F. J. McGarry, “Modified Mirco-debonding Test for Direct in Situ Fiber/Matrix Bond Strength Determination in Fiber Composites”, Composite Materials: Testing and Design, Seventh Conference, Philadelphia, Pennsylvania; USA; 2-4 Apr. 1984, pp. 87-108.
[14] A. L. Highsmith and K. L. Reifsnider, “Stiffness-reduction mechanisms in composite laminates”, Damage in composite materials: Basic mechanisms, accumulation, tolerance, and characterization (A83-14551 03-24), Philadelphia, PA, American Society for Testing and Materials, 1982, pp. 103-117.
[15] J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fiber-reinforced composite materials: Review”, Applied Mechanics Review (USA), Vol. 54, no. 4, 2001, pp. 279-300. doi:10.1115/1.1381395
[16] K. Yoshioka, and J. C. Seferis, “Modeling of Tensile Fatigue Damage in Resin Transfer Molded Woven Carbon Fabric Composites”, Composites: Part A, 2002, pp. 1593-1601.
[17] T. W. Chou and F. K. Ko, “Textile structural composites”, Elsevier Science Publishers B.V, Sara Burgerhartstraat 25, P.O. Box 211, 1000 AE Amsterdam, the Netherlands, 1989.
[18] J. Degrieck and W. V. Paepegem, “Coupled Residual Stiffness and Strength Model for Fatigue of Fiber-Reinforced Composite Materials”, Composite Science and Technology, Vol. 62, 2002, pp. 687–696. doi:10.1016/S0266-3538(01)00226-3
[19] C. Wen and S. Yazdani, “Anisotropic Damage Model for Woven Fabric Composites during Tension-Tension Fatigue”, Composite structures, Vol. 82, 2008, pp. 127-131. doi:10.1016/j.compstruct.2007.01.003
[20] S. Yazdani and H. L. Schreyer, “Combined Plasticity and Damage Mechanics Model for Plain Concrete”, Journal of Engineering Mechanics, Vol. 116, 1990, pp. 1435-1450. doi:10.1061/(ASCE)0733-9399(1990)116:7(1435)
[21] S. Yazdani and S. A. Karnawat, “Constitutive Theory for Brittle Solids with Application to Concrete”, International Journal of Damage Mechanics, Vol. 5, 1996, pp. 93-110. doi:10.1177/105678959600500105
[22] B. Budiansky and R. J. O’ Connell, “Elastic Moduli of a Cracked Solid”, Int. J. Solids Struct, Vol. 12, 1976, pp. 81-97. doi:10.1016/0020-7683(76)90044-5
[23] H. Horri and S. Nemat-Nasser, “Overall Moduli of Solids with Microcracks: Load-induced Anisotropy”, J. Mech. Phys. Solids, Vol. 31, 1983, pp. 155-171. doi:10.1016/0022-5096(83)90048-0
[24] M. Ortiz, “A Constitutive Theory for the Inelastic Behavior of Concrete”, Mech. Mater., Vol. 4, 1985, pp. 67-93. doi:10.1016/0167-6636(85)90007-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.