Share This Article:

String Cloud and Domain Walls with Quark Matter in Lyra Geometry

Abstract Full-Text HTML Download Download as PDF (Size:169KB) PP. 1479-1486
DOI: 10.4236/jmp.2012.310182    3,588 Downloads   5,694 Views   Citations

ABSTRACT

We have constructed cosmological models for string cloud and domain walls coupled with quark matter in Lyra geometry. For this purpose we have solved the field equations using anisotropy feature of the universe, special law of variation for Hubble’s parameter proposed by Berman [78] which yields constant deceleration parameter; and time varying displacement field . Further some properties of the obtained solutions are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Mahanta and A. Biswal, "String Cloud and Domain Walls with Quark Matter in Lyra Geometry," Journal of Modern Physics, Vol. 3 No. 10, 2012, pp. 1479-1486. doi: 10.4236/jmp.2012.310182.

References

[1] H. Weyl, Sitzungsber Preuss Akad Wiss. Berlin, 1918, p. 465.
[2] G. Lyra, “Ubereine Modifikation der Riemannschen Geometrie,” Mathematische Zeitschrift, Vol. 54, No. 1, 1951, pp. 52-64. doi:10.1007/BF01175135
[3] D. K. Sen, “A Static Cosmological Model,” Zeitschriftfur Physik A Hadrons and Nuclei, Vol. 149, No. 3, 1957, pp. 311-323.
[4] W. D. Halford, “Cosmological Theory Based on Lyra’s Geometry,” Australian Journal of Physics, Vol. 23, No. 5, 1970, pp. 863-870.
[5] W. D. Halford, “Scalar-Tensor Theory of Gravitation in a Lyra Manifold,” Journal of Mathematical Physics, Vol. 13, No. 11, 1972, pp. 1699-1704.
[6] A. Beesham, “FLRW Cosmological Models in Lyra’s Manifold with Time Dependent Displacement Field,” Australian Journal of Physics, Vol. 41, No. 6, 1988, pp. 833-842.
[7] T. Singh and G. P. Singh, “Lyra’s Geometry and Cosmology: A Review,” Fortschritte der Physik, Vol. 41, No. 8, 1993, pp. 737-764. doi:10.1002/prop.2190410804
[8] G. P. Singh and K. Desikan, “A New Class of Cosmo-Logical Models in Lyra Geometry,” Pramana Journal of Physics, Vol. 49, No. 2, 1997, pp. 205-212. doi:10.1007/BF02845856
[9] A. Pradhan, L. Yadav and A. K. Yadav, “Isotropic Homogeneous Universe with a Bulk Viscous Fluid in Lyra Geometry,” Astrophysics and Space Science, Vol. 299, No 1, 2005, pp. 31-42. doi:10.1007/s10509-005-2795-x
[10] F. Rahaman, “Higher-Dimensional Global Monopole in Lyra’s Geometry,” Fizika B, Vol. 11, No. 4, 2002, pp. 223-229.
[11] F. Rahaman, S. Das, N. Begum and M. Hossain, “Higher Dimensional Homogeneouscosmology in Lyra Geometry,” Pramana Journal of Physics, Vol. 61, No. 1, 2003, pp. 153-159. doi:10.1007/BF02704519
[12] G. P. Singh, R. V. Deshpande and T. Singh, “Higher-Dimensional Cosmological Model with Variable Gravitational Constant and Bulk Viscosity in Lyra Geometry,” Pramana Journal of Physics, Vol. 63, No. 5, 2004, pp. 937-945. doi:10.1007/BF02704332
[13] G. Mohanty, K. L. Mahanta and R. R. Sahoo, “Non-Existence of Five Dimensional Perfect Fluid Cosmological Model in Lyra Manifold,” Astrophysics and Space Science, Vol. 306, No. 4, 2006, pp. 269-272. doi:10.1007/s10509-006-9272-z
[14] G. Mohanty, K. L. Mahanta and B. K. Bishi, “Five Dimensional Cosmological Models in Lyra Geometry with Time Dependent Displacement Field,” Astrophysics and Space Science, Vol. 310, No. 3-4, 2007, pp. 273-276. doi:10.1007/s10509-007-9513-9
[15] G. Mohanty and K. L. Mahanta, “Five-Dimensional Axially Symmetric String Cosmological Model in Lyra Manifold,” Astrophysics and Space Science, Vol. 312, No. 3-4, 2007, pp. 301-304. doi:10.1007/s10509-007-9691-5
[16] D. K. Sen and K. A. Dunn, “A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold,” Journal of Mathematical Physics, Vol. 12, 1971, pp. 578-586. doi:10.1063/1.1665623
[17] T. Singh and G. P. Singh, “Bianchi Type-I Cosmological Models in Lyra’s Geometry,” Journal of Mathematical Physics, Vol. 32, No. 9, 1991, pp. 2456-2458. doi:10.1063/1.529495
[18] T. Singh and G. P. Singh, “Bianchi Type-III and Kantowski-Sachs CosmologicalModels in Lyra’s Geometry,” International Journal of Theoretical Physics, Vol. 31, No. 8, 1992, pp. 1433-1446. doi:10.1007/BF00673976
[19] J. K. Singh and Sri Ram, “Spatially Homogeneous Cosmological Models in Lyra’s Geometry,” Il NuovoCimento B, Vol. 112, No. 8, 1997, pp.1157-1162.
[20] A. Vilenkin and E. P. S. Shellard, “Cosmic Strings and other Topological Defects,” Cambridge University Press, Cambridge, 1994.
[21] A. Vilenkin, “Cosmic Strings and Domain Walls,” Physics Reports, Vol. 121, No. 5, 1985, pp. 263-315. doi:10.1016/0370-1573(85)90033-X
[22] A. Vilenkin and A. E. Everett, “Cosmic Strings and Domain Walls in Models with Goldstone and Pseudo-Goldstone Bosons,” Physical Review Letters, Vol. 48, No. 26, 1982, pp. 1867-1870. doi:10.1103/PhysRevLett.48.1867
[23] R. Rajaraman, “Solutions and Instantons,” North-Holland, Amsterdam, 1987.
[24] T. H. R. Skyrme, “Particle States of a Quantized Meson Field,” Proceedings of the Royal Society A, Vol. 262, No. 1309, 1961, pp. 237-245.
[25] T. W. B. Kibble, “Topology of Cosmic Domains and Strings,” Journal of Physics A, Vol. 9, No. 8, 1976, p. 1387.
[26] A. Vilkenkin, “Cosmic Strings,” Physical Review D, Vol. 24, No. 8, 1982, pp. 2082-2089.
[27] A. E. Everett, “Cosmic Strings in Unified Gauge Theories,” Physical Review D, Vol. 24, No. 4, 1981, pp. 858-868. doi:10.1103/PhysRevD.24.858
[28] Ya. B. Zeldovich, I. Yu. Kobzarev and L. B. Okun, Zh. Eksp. Teor. Fiz., Vol. 67, 1974, p. 3
[29] Ya. B. Zeldovich, I. Yu. Kobzarev and L. B. Okun, Sov. Phys. JETP, Vol. 40, 1975, p. 1.
[30] J. Ellis, “Gauge Theories and Experiments at High Energies,” Proceedings of the 21st Scottish University Summer School, SUSSP Publication, Edinburgh, 1981, p. 201.
[31] J. Stachel, “Thichening the String. I. The String Perfect Dust,” Physical Review D, Vol. 21, No. 8, 1980, pp. 2171-2181. doi:10.1103/PhysRevD.21.2171
[32] P. S. Letelier, “String Cosmologies,” Physical Review D, Vol. 28, No. 10, 1983, pp. 2414-2419. doi:10.1103/PhysRevD.28.2414
[33] C. J. Hogan and M. J. Rees, “Gravitational Interactions of Cosmic Strings,” Nature, Vol. 311, 1984, pp. 109-114. doi:10.1038/311109a0
[34] Y. S. Myung, B. H. Cho, Y. Kim and Y. J. Park, “Entropy Production of Superstrings in Thevery Early Universe,” Physical Review D, Vol. 33, No. 10, 1986, pp. 2944-2947. doi:10.1103/PhysRevD.33.2944
[35] K. D. Krori, T. Chaudhury, C. R. Mahanta and A. Mazumdar, “Some Exact Solutions Instring Cosmology,” General Relativity and Gravitation, Vol. 22, No. 2, 1990, pp. 123-130. doi:10.1007/BF00756203
[36] C. Gundalach and M. E. Ortiz, “Jordan-Brans-Dicke Cosmic Strings,” Physical Review D, Vol. 42, No. 8, 1990, pp. 2521-2526. doi:10.1103/PhysRevD.42.2521
[37] A. Barros and C. Romero, “Cosmic Vacuum Strings and Domain Walls in Brans-Dicke Theory of Gravity,” Journal of Mathematical Physical, Vol. 36, No. 10, 1995, pp. 5800-5804. doi:10.1063/1.531287
[38] I. Yavuz anf I. Yilmaz, “Some Exact Solutions of String Cosmology with Heat Flux in Bianchi Type III Space time,” Astrophysics and Space Science, Vol. 245, No. 1, 1996, pp. 131-138. doi:10.1007/BF00637808
[39] A. Banerjee, N. Banerjee and A. A. Sen, “Static and Nonstatic Global String,” Physical Review D, Vol. 53, No. 10, 1996, pp. 5508-5512. doi:10.1103/PhysRevD.53.5508
[40] D. R. K. Reddy, “Plane Symmetric Cosmic Strings in Lyra Manifold,” Astrophysics and Space Science, Vol. 300, No. 4, 2005, pp. 381-386. doi:10.1007/s10509-005-4716-4
[41] J. M. Nevin, “String Dust Solutions of the Einstein’s Field Equations with Spherical and Static Cylindrical Symmetry,” General Relativity and Gravitation, Vol. 23, No. 3, 1991, pp. 253-260. doi:10.1007/BF00762288
[42] S. Chakraborty, “A Study on Bianchi-IX Cosmological Model,” Astrophysics and Space Science, Vol. 180, No. 2, 1991, pp. 293-303. doi:10.1007/BF00648184
[43] R. Tikekar and L. K. Patel, “Some Exact Solutions of String Cosmology in Bianchi III Spacetime,” General Relativity and Gravitation, Vol. 24, No. 4, 1992, pp. 397-404. doi:10.1007/BF00760415
[44] G. Mohanty, R. R. Sahoo and K. L. Mahanta, “Five Dimensional LRS Bianchi Type-I String Cosmological Model in Saez and Ballester Theory,” Astrophysics and Space Science, Vol. 312, No. 3-4, 2007, pp. 321-324. doi:10.1007/s10509-007-9697-z
[45] G. Mohanty and R. R. Sahoo, “Incompatibility of Five Dimensional Lrs Bianchi Type-V String and Mesonic String Cosmological Models in General Relativity,” Astrophysics and Space Science, Vol. 315, No. 1-4, 2008, pp. 319-322. doi:10.1007/s10509-008-9835-2
[46] R. Bali and R. D. Upadhaya, “An LRS Bianchi Type I Bulk Viscous Fluid String Cosmological Model in General Realtivity,” Astrophysics and Space Science, Vol. 288, No. 3, 2003, pp. 287-292. doi:10.1023/B:ASTR.0000006037.79305.66
[47] X. X. Wang, “Exact Solutions for String Cosmology,” Chinese Physical Letters, Vol. 20, No. 5, 2003, pp. 615-617.
[48] X. X. Wang, “Kantowski-Sachs String Cosmological Model with Bulk Viscosity in General Relativity,” Astrophysics and Space Science, Vol. 298, No. 3, 2005, pp. 433-440. doi:10.1007/s10509-005-5833-9
[49] A. Pradhan and P. Mathur, “Magnetized String Cosmological Model in Cylindrically Symmetric Inhomogeneous Universe-Revisited,” Astrophysics and Space Science, Vol. 318, No. 3-4, 2008, pp. 255-261. doi:10.1007/s10509-008-9931-3
[50] A. Pradhan, “Some Magnetized Bulk Viscous String Cosmological Models in Cylindrically Symmetric Inhomogeneous Universe with Variable Λ Term,” Communications in Theoretical Physics, Vol. 51, No. 2, 2009, pp. 367-374. doi:10.1088/0253-6102/51/2/36
[51] H. Amirashchi and H. Zainuddin, “Magnetized Bianchi Type III Massive String Cosmological Models in General Relativity,” International Journal of Theoretical Physics, Vol. 49, No. 11, 2010, pp. 2815-2828. doi:10.1007/s10773-010-0474-3
[52] S. K. Tripathy. S. K. Sahu and T. R. Routray, “String Cloud Cosmologies for Bianchi Type-III Models with Electromagnetic Field,” Astrophysics and Space Science, Vol. 315, No. 1-4, 2008, pp. 105-110. doi:10.1007/s10509-008-9805-8
[53] C. T. Hill, D. N. Schramm and J. N. Fry, “Cosmological Structure Formation from Soft Topological Defects,” Comments on Nuclear and Particle Physics, Vol. 19, 1989, p. 25.
[54] A. Villenkin, “Gravitational Field of Vacuum Domain Walls,” Physics Letters B, Vol. 133, No. 3-4, 1983, pp. 177-179.
[55] J. Ipser and P. Sikivie, “Gravitationally Repulsive Domain Wall,” Physical Review D, Vol. 30, No. 4, 1984, pp. 712-719. doi:10.1103/PhysRevD.30.712
[56] H. Schmidt and A. Wang, “Plane Domain Walls When Coupled with the Brans-Dicke Scalar Fields,” Physical Review D, Vol. 47, No. 10, 1984, pp. 4425-4432.
[57] L. M. Widrow, “General-Relativistic Domain Walls,” Physical Review D, Vol. 39, No. 12, 1989, pp. 3571-3575. doi:10.1103/PhysRevD.39.3571
[58] G. Goetz, “The Gravitational Field of Plane Symmetric Thick Domain Walls,” Journal of Mathematical Physics, Vol. 31, No. 11, 1990, pp. 2683-2687. doi:10.1063/1.528969
[59] A. Wang, “Gravitational Collapse of Thick Domain Walls: An Analytic Model,” Modern Physics Letters A, Vol. 9, No. 39, 1994, pp. 3605-3609. doi:10.1142/S0217732394003440
[60] F. Rahaman, P. Ghosh, S. Shekhar and S. Mal, “Higher Dimensional Thick Domain Wall in Lyra Geometry,” Astrophysics and Space Science, Vol. 286, No. 3-4, 2003, pp. 373-379. doi:10.1023/A:1026355131560
[61] A. Pradhan, I. Aotemshi and G. P. Singh, “Plane Symmetric Domain Wall in Lyrageometry,” Astrophysics and Space Science, Vol. 288, No. 3, 2003, pp. 315-325. doi:10.1023/B:ASTR.0000006061.77421.c9
[62] F. Rahaman and R. Mukherji, “Domain Walls in Lyra Geometry,” Astrophysics and Space Science, Vol. 288, No. 4, 2003, pp. 389-397. doi:10.1023/B:ASTR.0000005095.28348.69
[63] F. Rahaman, M. Kalam and R. Mandal, “Thin Domain Walls in Lyra Geometry,” Astrophysics and Space Science, Vol. 305, No. 4, 2006, pp. 337-340. doi:10.1007/s10509-006-9063-6
[64] A. Pradhan, K. K. Rai and A. K. Yadav, “Plane Symmetric Bulk Viscous Domain Wall in Lyra Geometry,” Brazilian Journal of Physics, Vol. 37, No. 3b, 2007, pp. 1084-1093.
[65] N. Itoh, “Hydrostatic Equilibrium of Hypothetical Quark Stars,” Progress of Theoretical Physics, Vol. 44, No. 1, 1970, pp. 291-292. doi:10.1143/PTP.44.291
[66] A. R. Bodmer, “Collapsed Nuclei,” Physical Review D, Vol. 4, No. 6, 1971, pp. 1601-1606. doi:10.1103/PhysRevD.4.1601
[67] E. Witten, “Cosmic Separation of Phases,” Physical Review D, Vol. 30, No. 2, 1984, pp. 272-285. doi:10.1103/PhysRevD.30.272
[68] C. Alcock, E. Farhi and A. Olinto, “Strange Stars,” The Astrophysical Journal, Vol. 310, 1986, pp. 261-272.
[69] P. Haensel, J. L. Zdunik and R. Schaefer, “Strange Quark stars,” Astronomy & Astrophysics, Vol. 160, No. 1, 1986, pp. 121-128.
[70] J. Kapusta, “Finite Temperature Field Theory,” Cambridge University Press, Cambridge, 1994.
[71] H. Sotani, K. Kohri and T. Harada, “Restricting Quark Matter Models by Gravitational Wave Observation,” Physical Review D, Vol. 69, No. 8, 2004, Article ID: 084008. doi:10.1103/PhysRevD.69.084008
[72] I. Yilmaz, “Domain Walls Solutions in the Non-Static and Stationary Godel Universes with a Cosmological Constant,” Physical Review D, Vol. 71, No. 10, 2005, Article ID: 103503. doi:10.1103/PhysRevD.71.103503
[73] I. Yilmaz, “String Cloud and Domain Walls with Quark Matter in 5-D Kaluza-Klein Cosmological Model,” General Relativity and Gravitation, Vol. 38, No. 9, 2006, pp. 1397-1406. doi:10.1007/s10714-006-0322-1
[74] K. S. Adhav, A. S. Nimkar and M. V. Dawande, “String Cloud and Domain walls with Quark Matter in n-Dimensional Kaluza-Klein Cosmological Model,” International Journal of Theoretical Physics, Vol. 47, No. 7, 2008, pp. 2002-2010. doi:10.1007/s10773-007-9644-3
[75] G. S. Khadekar, R. Wanjari and C. Ozel, “Domain Wall with Strange Quark Matter in Kaluza-Klein Type Cosmological Model,” International Journal of Theoretical Physics, Vol. 48, No. 9, 2009, pp. 2550-2557. doi:10.1007/s10773-009-0040-z
[76] K. L. Mahanta, S. K. Biswal, P. K. Sahoo and M. C. Adhikary, “String Cloud with Quark Matter in Self-Creation Cosmology,” International Journal of Theoretical Physics, Vol. 51, No. 5, 2012, pp. 1538-1544. doi:10.1007/s10773-011-1031-4
[77] R. Bali, “Magnetized Cosmological Model,” International Journal of Theoretical Physics, Vol. 25, No. 7, 1986, pp. 755-761. doi:10.1007/BF00668721
[78] M. S. Berman, “A Special Law of Variation for Hubble’s Parameter,” Il Nuovo Cimento B, Vol. 74, No. 2, 1983, pp. 182-186.
[79] N. Okuyama and K. Maeda, “Domain Wall Dynamics in Brane World and Nonsingular Cosmological Models,” Physical Review D, Vol. 70, No. 6, 2004, Article Id: 064030. doi:10.1103/PhysRevD.70.064030
[80] B. B. Back, et al., “The PHOBOS Perspective on Discoveries at RHIC,” Nuclear Physics A, Vol. 757, No. 1-2, 2005, pp. 28-101.
[81] J. Adam, et al., “Experimental and Theoretical Challenges in the Search for the Quark-Gluon Plasma: The STAR Collaboration’s Critical Assessment of the Evidence from RHIC Collisions,” Nuclear Physics A, Vol. 757, No. 1-2, 2005, pp. 102-183.
[82] C. B. Collins, E. N. Glass and D. A. Wilkinson, “Exact Spatially Homogeneous Cosmologies,” General Relativity and Gravitation, Vol. 12, No. 10, 1980, pp. 805-823. doi:10.1007/BF00763057

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.