[1]

O. A. Battistel and G. Dallabona, “Scale Ambiguities in Perturbative Calculations and the Value for the Radiatively Induced ChernSimons Term in Extended QED,” Physical Review D, Vol. 72, No. 4, 2005, Article ID: 045009.


[2]

O. A. Battistel and G. Dallabona, “A Systematization for OneLoop 4D Feynman Integrals,” The European Physical Journal C, Vol. 45, No. 3, 2006, pp. 721743.
doi:10.1140/epjc/s2005024370


[3]

G. Passarino and M. Veltman, “One Loop Corrections for e^{+}e^{} Annihilation into μ^{+} μ^{} in the Weinberg Model,” Nuclear Physics B, Vol. 160, No. 1, 1979, pp. 151207.
doi:10.1016/05503213(79)902347


[4]

W. L. van Neerven and J. A. Vermaseren, “Large Loop Integrals,” Physics Letters B, Vol. 137, No. 34, 1984, pp. 241244.


[5]

G. J. Oldenborgh and J. A. Vermaseren, “New Algorithms for One Loop Integrals,” Zeitschrift fur Physik C Particles and Fields, Vol. 46, No. 3, 1990, pp. 425437.


[6]

A. I. Davydychev, “A Simple Formula for Reducing Feynman Diagrams to Scalar Integrals,” Physics Letters B, Vol. 263, No. 1, 1991, pp. 107111.


[7]

Z. Bern, L. J. Dixon and D. A. Kosower, “Dimensionally Regulated One Loop Integrals,” Physics Letters B, Vol. 302, No. 23, 1993, pp. 299308.


[8]

O. V. Tasarov, “Connection between Feynman Integrals Having Different Values of the SpaceTime Dimension,” Physical Review D, Vol. 54, No. 10, 1996, pp. 64796490.


[9]

R. G. Stuart, “Algebraic Reduction of One Loop Feynman Diagrams to Scalar Integrals,” Computer Physics Communications, Vol. 48, No. 3, 1988, pp. 367389.
doi:10.1016/00104655(88)902020


[10]

J. Campbell, E. Glover and D. Miller, “One Loop Tensor Integrals in Dimensional Regularization,” Nuclear Physics B, Vol. 498, No. 12, 1997, pp. 397442.
doi:10.1016/S05503213(97)00268X


[11]

G. Devaraj and R. G. Stuart, “Reduction of One Loop Tensor FormFactors to Scalar Integrals: A General Scheme,” Nuclear Physics B, Vol. 519, No. 12, 1998, pp. 483513. doi:10.1016/S05503213(98)000352


[12]

J. Fleischer, F. Jegerlehner and O. V. Tasarov, “Algebraic Reduction of One Loop Feynman Graph Amplitudes,” Nuclear Physics B, Vol. 566, No. 12, 2000, pp. 423440.
doi:10.1016/S05503213(99)006781


[13]

G.’t Hooft and M. Veltman, “Scalar One Loop Integrals,” Nuclear Physics B, Vol. 153, 1979, pp. 365401.
doi:10.1016/05503213(79)906059


[14]

T. Binoth, J. P. Guillet and G. Heinrich, “Reduction Formalism for Dimensionally Regulated OneLoop NPoint Integrals,” Nuclear Physics B, Vol. 572, No. 12, 2000, pp. 361386. doi:10.1016/S05503213(00)000407


[15]

T. Binoth, J. P. Guillet, G. Heinrich and C. Schubert, “Calculation of One Loop Hexagon Amplitudes in the Yukawa Model,” Nuclear Physics B, Vol. 615, No. 13, 2001, pp. 385401. doi:10.1016/S05503213(01)004369


[16]

A. Denner and S. Dittmaier, “Reduction of One Loop Tensor Five Point Integrals,” Nuclear Physics B, Vol. 658, No. 12, 2003, pp. 175202.
doi:10.1016/S05503213(03)001846


[17]

G. Duplancic and B. Nizic, “Reduction Method for Dimensionally Regulated One Loop N Point Feynman Integrals,” European Physical Journal, Vol. 35, 2004, pp. 105118.


[18]

G. Duplancic and B. Nizic, “Dimensionally Regulated One Loop Box Scalar Integrals with Massless Internal Lines,” European Physical Journal, Vol. 20, 2001, pp. 357370.


[19]

G. Duplancic and B. Nizic, “IR Finite One Loop Box Scalar Integral with Massless Internal Lines,” European Physical Journal, Vol. 24, 2002, pp. 385391.


[20]

F. del Aguila and R. Pittau, “Recursive Numerical Calculus of OneLoop Tensor Integrals,” Journal of High Energy Physics, Vol. 7, 2004, p. 17.


[21]

W. T. Giele and E. W. N. Glover, “A Calculational Formalism for One Loop Integrals,” Journal of High Energy Physics, Vol. 8, 2004, p. 29.


[22]

R. Britto and B. Feng, “Integral Coefficients for OneLoop Amplitudes,” Journal of High Energy Physics, Vol. 2, 2008, p. 95.


[23]

A. Denner and S. Dittmaier, “Reduction Schemes for OneLoop Tensor Integrals,” Nuclear Physics B, Vol. 734, No. 12, 2006, pp. 62115.
doi:10.1016/j.nuclphysb.2005.11.007


[24]

T. Binoth, J. Ph. Guillet, G. Heinrich, E. Pilon and C. Schubert, “An Algebraic/Numerical Formalism for OneLoop MultiLeg Amplitudes,” Journal of High Energy Physics, Vol. 10, 2005, p. 15.


[25]

Y. Kurihara, “Dimensionally Regularized OneLoop TensorIntegrals with Massless Internal Particles,” European Physical Journal, Vol. 45, No. 2, 2006, pp. 427444.
doi:10.1140/epjc/s2005024281


[26]

C. Anastasiou, E. W. Nigel Glover and C. Oleari, “Scalar One Loop Integrals Using the Negative Dimension Approach,” Nuclear Physics B, Vol. 572, No. 12, 2000, pp. 307360. doi:10.1016/S05503213(99)006379


[27]

P. Mastrolia, G. Ossola, C. G. Papadopoulos and R. Pittau, “Optimizing the Reduction of OneLoop Amplitudes,” Journal of High Energy Physics, Vol. 6, 2008, p. 30.


[28]

R. Keith Ellis and G. Zanderighi, “Scalar OneLoop Integrals for QCD,” Journal of High Energy Physics, Vol. 2, 2008, p. 2.


[29]

G. Ossola, C. G. Papadopoulos and R. Pittau, “On the Rational Terms of the OneLoop Amplitudes,” Journal of High Energy Physics, Vol. 5, 2008, p. 4.


[30]

O. A. Battistel, “Uma Nova Estrategia Para Manipula?oes e Cálculos Envolvendo Divergências em T.Q.C.,” Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, 1999.


[31]

Y. Sun and H.R. Chang, “One Loop Integrals Reduction,” 2012.

